Real Numbers
There are two ways we could try to
talk precisely about
$$R$$
.
() Construct R from Z
This is possible, but hard!
Step 1: Construct Q.
• Allow division to get fractions
 $\frac{1}{5}$ with $a, b \in \mathbb{Z}$, $b \neq 0$.
• Impose equivalence
 $\frac{1}{5} = \frac{c}{4} \iff ad = bc$
• Check that this is compatible
with $+, \cdot$.
Step 2: Construct R.
• Somehow use the idea that real
numbers are approximated by retirnals.

2 Give axioms for R See handont. · Most of these were also axioms for Z • There is no Well-Ordening axiom • There are 2 new axioms. $(\widehat{\mathcal{D}} \underbrace{\mathsf{Multiplicative Inverses}}_{a \in \mathbb{R}}: For each$ $a \in \mathbb{R} \quad \text{such that } a \neq 0, \text{ there exists } a^{-1} \in \mathbb{R} \quad \text{such that}$ $a \cdot a^{-1} = 1.$ Write & to mean b.a. (1) <u>Least Upper Bound Property</u>: Every non-empty subset of R which has an upper bound has a <u>least upper bound</u> in R.

So everything we proved about Z without
using Well-Ordering will also be true
for R.
• these new axions will give R new
properties that we did not have in Z.
Division and Rational Numbers
Lemma: For all a, b \in R with a ×0 and b×0,
(a) If a b = 1, then b = a⁻¹. [Unigness of Mult. Inverses]
(b)
$$(a^{-1})^{-1} = a$$
.
(c) $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$
(d) $(-a)^{-1} = -a^{-1}$
(e) a > 0 if and only if $a^{-1} > 0$.
In fraction Notation: $\cdot ab = 1 \Rightarrow b = 1$
 $\cdot \frac{1}{(a)} = -\frac{1}{a}$
 $\cdot \frac{1}{(a)} = -\frac{1}{a}$

Def: A real number $x \in \mathbb{R}$ is a rational number if there exist integers $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $x = a \cdot b^{-1}$.

Write
$$x = \frac{2}{b}$$
, and say $\frac{2}{b}$ is a function representing x .
The set of all rational numbers is Q .

$$\frac{E_{X}}{3} = \frac{2}{3} \quad and \quad \frac{8}{12} \quad and \quad \frac{10}{15} \quad are \quad all \quad different$$
functions representing the same rational number.
$$\frac{R_{n}}{b} = \frac{2}{3} \iff a \cdot b^{-1} = c \cdot d^{-1} \iff ad = bc$$

$$\frac{R_{n}}{b} = \frac{2}{3} \iff a \cdot b^{-1} = c \cdot d^{-1} \iff ad = bc$$

a)
$$x + y \in \mathbb{Q}$$

b) $x - y \in \mathbb{Q}$
c) $x \cdot y \in \mathbb{Q}$
d) if $y \neq 0$, then $x \cdot y' \in \mathbb{Q}$.

Proof: (a) Since x and y are rational, there exist integers $a, b, c, d \in \mathbb{Z}$ such that $b \neq 0$, $d \neq 0$, and

$$x = \frac{\alpha}{b}, y = \frac{1}{a}.$$

Then

$$x + y = \frac{a}{b} + \frac{c}{d} = a \cdot b^{-1} + c \cdot d^{-1}$$

So
 $(bd) \cdot (x + y) = (bd) (ab^{-1} + cd^{-1})$
 $= ad + bc.$

Thus,

$$x + y = (ad + bc) \cdot (bd)^{-1}$$

 $= \frac{ad + bc}{bd}$.

Now
• ad+bc, bd
$$\in \mathbb{Z}$$

• bd $\neq 0$ because $b \neq 0$ and $d \neq 0$.
So $x + y = \frac{ad + bc}{bd} \in \mathbb{Q}$.

2

(b)-(d): Hw 16

Lemma: Let
$$x \in \Omega$$
. Then there is $m \in \mathbb{Z}$ and $n \in \mathbb{N}$
such that
 $x = \frac{m}{n}$.
Proof: Since x is rational, there exist $a, b \in \mathbb{Z}$ such that
 $x = \frac{a}{b}$.
• If $b > 0$, take $m = a$ and $n = b$.
• If $b < 0$, take $m = -a$ and $n = -b$, since
 $x = \frac{a}{b} = \frac{-a}{-b}$.

Def: A function
$$\frac{a}{b}$$
 is in lowest terms if for
every $d \in N$, if dla and dlb, then $d=1$.
That is, I is the only positive divisor a and
b have in common.
Ex: $\frac{2}{3}$ is in lovest terms. $\frac{8}{12}$ is not, because 418 and 4112.

Def: Let
$$x \in \mathbb{Q}$$
. A possible positive denominator
for x is a positive integer $n \in \mathbb{N}$ such that
there exists $m \in \mathbb{Z}$ with $x = \frac{m}{n}$.

Ex:
$$\frac{2}{3} = \frac{4}{6} = \frac{8}{12} = \frac{20}{30} = \cdots$$

so 3, 6, 12, 30 are some of the possible denominators
for this national number.

Thm: Let
$$x \in \mathbb{Q}$$
. There exist $n \in \mathbb{Z}$ and $n \in \mathbb{N}$ such
that $x = \frac{m}{n}$ and $\frac{m}{n}$ is in lowest terms.
Proof: Let S be the set of possible positive
denominators for x.
By the lemmn, x has a possible positive denominator,
so S is a non-empty subset of N.
By the Well - Ordening Principle, S has a smallest
element. Call it n.

So $x = \frac{m}{n}$ for some $m \in \mathbb{Z}$. <u>Claim:</u> $\frac{m}{n}$ is in lowest terms.

$$x = \frac{m}{n} = \frac{dL}{M} = \frac{L}{L}.$$

Def: Let XER. We say x is irrational if XEQ.

That is, for all a, b $\in \mathbb{Z}$ with $b \neq 0$, $x \neq \frac{a}{b}$.

Thim: Let
$$x \in \mathbb{Q}$$
 and let $y \in \mathbb{R}$ be irrational.
(1) $x + y$ is irrational.
(2) If $x \neq 0$, then $x \cdot y$ is irrational
Proof: (1) Suppose, to get a contradiction, that $x + y \in \mathbb{Q}$.
Since x is rational, $-x$ is rational (HW 16).
Thus,
 $y = (x + y) + (-x)$
is the sum of two rational numbers,
so $y \in \mathbb{Q}$, a contradiction.

2 Hw 16.