Warm $-U_{p}$: Prove or disprove:
If $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers in lowest terms, then

$$
\frac{a d+b c}{b d}
$$

is also in lowest terms.

Let's prove that $\sqrt{2}$ is irrational. We'll use
Fact: Let $n \in \mathbb{Z}$. If n^{2} is even, then n is even. (HoW 9)

Thu: For every $x \in \mathbb{Q}, x^{2} \neq 2$.
This actually only shows $\sqrt{2} \notin \mathbb{Q}$. To prove that $\sqrt{2}$ is a real number, you need to use the Least Upper Bound Property.

Proof: Suppose, to get a contradiction, that there is some $x \in \mathbb{Q}$ such that $x^{2}=2$.

Let $x=\frac{a}{b}$ be a representation of x in lowest terms, where $a, b \in \mathbb{Z}$ and $b \neq 0$.

This means: If $d \in \mathbb{N}$ and $d l a$ and $d l b$, then $d=1$. Equivalently, $\operatorname{gcd}(a, b)=1$.

We have $x^{2}=\left(\frac{a}{b}\right)^{2}=2$, so $\frac{a^{2}}{b^{2}}=2$. Therefore,

$$
\begin{equation*}
a^{2}=2 b^{2} \tag{*}
\end{equation*}
$$

Since $b^{2} \in \mathbb{Z}$, this shows a^{2} is oven, and thus a is even as well.

Then $a=2 k$ for some $k \in \mathbb{Z}$. Now (*) becomes

$$
\begin{aligned}
& (2 k)^{2}=2 b^{2} \\
& 4 b^{2}=2 b^{2} .
\end{aligned}
$$

We may divide both sides by 2 cor use Multiplicative Cancellation) to get

$$
2 k^{2}=b^{2}
$$

But this means b^{2} is even, and thus so is 6 .

Now 21a and 216, which contradicts $x=\frac{a}{b}$ being in lowest terms.

We conclude that there is no such X in \mathbb{Q}.

Ex: $\cdot \sqrt{3}, \sqrt{5}, \sqrt{6}$ are irrational

- \sqrt{n} is irrational if $n \in \mathbb{Z}$ is not a perfect square.
- $\sqrt[3]{2}$ is irrational
- π and e are irrational

Hard to prove any of these!

- Euler, 1731

Here is a vast generalization:
For each $n \in \mathbb{N}$, either

$$
\cdot \sqrt{n} \in \mathbb{N}
$$

or

- \sqrt{n} is irrational.

This follows immediately from the following

Thy (Example 4.53 in text):
If $x \in \mathbb{Q}$ and $x^{2} \in \mathbb{Z}$, then $x \in \mathbb{Z}$.
\rightarrow Take $x=\sqrt{n}$ to prove the boxed statement.
Proof: Suppose $x \in \mathbb{Q}$ and $x^{2} \in \mathbb{Z}$.
Write $x=\frac{a}{b}$ in lowest terms with $a \in \mathbb{Z}$ and $b \in \mathbb{N}$.

Our goal is to show $b=1$, so $x=a \in \mathbb{Z}$.
Let's assume $b \neq 1$ and get a
contradiction. contradiction.

Since $b \neq 1$ and $b \in \mathbb{N}$, we have $b>1$. Thus, there is some prime p such that pleb.
Now, $x^{2}=\frac{a^{2}}{b^{2}}=n$ for some $n \in \mathbb{Z}$.
Thus,

$$
a^{2}=b^{2} n=b(b n)
$$

That is, b / a^{2}. By transitivity of divisibility, plan also.
But then "pla by the "Theorem on Division by a Prime."
So pla and plo, contradicting the fact that $\frac{a}{b}$ is in lowest terms

Therefore, we conclude $b=1$ and thus $x \in \mathbb{Z}$.

