$$\frac{Warm - Up}{Dp}: Prove or disprove:$$
If $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers in lonest terms, then
$$\frac{ad + bc}{bd}$$
is also in longest terms

<u>Proof</u>: Suppose, to get a contradiction, that there is some $x \in Q$ such that $x^2 = 2$.

Let
$$x = \frac{a}{b}$$
 be a representation of x in
lowest terms, where $a, b \in \mathbb{Z}$ and $b \neq 0$.
This means: If de N and dla and dlb, then d=1.
Equivalently, $gcd(a,b)=1$.

We have
$$x^2 = \left(\frac{a}{b}\right)^2 = 2$$
, so $\frac{a^2}{b^2} = 2$.
Therefore,

$$a^2 = 2b^2$$
. (*)

Since
$$b^2 \in \mathbb{Z}$$
, this shows a^2 is even, and
thus a is oven as well.

$$(2L)^2 = 2b^2$$

 $4L^2 = 2b^2$.

We may divide both sides by 2 (or use
Multiplicative Cancellation) to get
$$2h^2 = b^2$$
.

- But this means b² is even, and thus so is b.
- Now 21a and 21b, which contradicts $x = \frac{a}{b}$ being in lowest terms. We conclude that there is no such x in Q.

Then (Example 4.53 in text):
If
$$x \in \mathbb{Q}$$
 and $x^2 \in \mathbb{Z}$, then $x \in \mathbb{Z}$.
Let $x = \sqrt{n}$ to prove the boxed statement.
Proof: Suppose $x \in \mathbb{Q}$ and $x^2 \in \mathbb{Z}$.
Write $x = \frac{\alpha}{b}$ in lowest terms with $\alpha \in \mathbb{Z}$
and $b \in \mathbb{N}$.

Our goal is to show b=1, so x=a & Z. Let's assume $b \neq 1$ and get a contradiction. Since $b \neq l$ and $b \in N$, we have b > l. Thus, there is some prime p such that $p \mid b$. Now, $x^2 = \frac{a^2}{b^2} = n$ for some $n \in \mathbb{Z}$. $a^2 = b^2 n = b(bn).$ That is, $b|a^2$. By transitivity of divisibility, $p|a^2$ also. But then pla by the "Theorem on Division by a Prime." So pla and plb, contradicting the fact that $\frac{a}{b}$ is in lowest terms Therefore, we conclude b=1 and thus x EZ.