What about the sum of two irrational numbers?

- If can be rational: $\sqrt{2}$ is irrational.

So is $-\sqrt{2}=(-1) \cdot \sqrt{2}$.
But $\sqrt{2}+(-\sqrt{2})=0 \in \mathbb{Q}$.

- If can be irrational: $\sqrt{2}+\sqrt{2}=2 \sqrt{2}$ is irrational

The same thing happens with multiplication:

$$
\underset{\text { aam }}{\sqrt{2} \cdot \sqrt{2}}=2 \in \mathbb{Q} \quad \sqrt{2} \cdot \sqrt{3}=\sqrt{6} \notin \mathbb{Q}
$$

Sets
"Def": A set is an unordered collection of objects, called elements of the set.

Actual definition is a list of axioms
One way to describe a set: list its elements inside braces.

Ex: $\{1,2,3\},\{$ red, blue $\},\{\Theta, \$, \pm, \square\}$ are sets
Important notes:

- The elements in a set are unordered.

So

$$
\{1,2,3\},\{1,3,2\},\{2,1,3\},\{2,3,1\},\{3,1,2\},\{3,2,1\}
$$

are six ways of writing the same set.

- The elements are distinct - no object can appear more than once. If we write

$$
\{1,1,1,2,2,2,2,2,2,3,3\}
$$

this means the set $\{1,2,3\}$.

Notation: If A is a set, then $x \in A$ means x is an element of $A, x \notin A$ means x is not an element of A.

Ex: $A=\{1,2,3\}$. Then $2 \in A$ and © $\& A$.
Sets can have sets as elements.

Ex: $A=\{\{1,2\},\{$ red, blue $\}, \$\}$ is a set with three elements, two of which are sets themselves.

$$
\begin{array}{r}
\{1,2\} \in A \\
\quad \mid \notin A
\end{array}
$$

Def: The empty set is the set with no elements. It is denoted ϕ. $x \in \varnothing$ is false for every x.

Other ways to specify sets
In words: - Let B be the set whose elements are the first five prime numbers

So $B=\{2,3,5,7,11\}$

- Let $\mathbb{R}_{>0}$ be the set of all positive real numbers.

By patterns:- $E=\{2,4,6,8, \ldots\}$
(E is the set of positive even numbers)

- $P=\{2,3,5,7,11, \ldots\}$
(P is the set of all prime numbers)

These first two methods are somewhat limited.

Set-Builder Notation: If $P(x)$ is a sentence, then

$$
\left\{\left.x\right|_{\uparrow} P(x)\right\} \quad \text { or } \quad\{x: P(x)\}
$$

"Such that"
is the set of all x such that $P(x)$ is true.

If A is a set, then

$$
\{x \in A \mid P(x)\}
$$

is the set of all x such that $x \in A$ and $P(x)$ is true. (x is a bound variable)

- $E=\{n \mid n \in \mathbb{N}$ and n is even $\}$.

Also, $E=\{n \in \mathbb{N} \mid n$ is even $\}$.
Also, $E=\{n \in \mathbb{N}: 2 \ln \}$.

- $\mathbb{R}_{>0}=\{x \in \mathbb{R} \mid x>0\}$.

Also, $\mathbb{R}_{>0}=\{y \in \mathbb{R} \mid y>0\}$

Transformation notation: If A is a set and f is some function defined
on A, then

$$
\{f(x) \mid x \in A\}
$$

is the set of all objects $f(x)$ obtained from all $x \in A$.

$$
\begin{aligned}
E & =\{2 n \mid n \in \mathbb{N}\} \\
\cdot S & =\left\{n^{2} \mid n \in \mathbb{N}\right\}<\text { Transformation } \\
& =\left\{\begin{array}{l}
\left.m \mid \text { there exists } n \in \mathbb{N} \text { such that } n^{2}=m\right\} \\
\text { Set-Builder }
\end{array}\right.
\end{aligned}
$$

Ex: Let $S=\left\{n^{2} \mid n \in \mathbb{N}\right\}$ be the set of (positive) squares and $C=\left\{n^{3} \mid n \in \mathbb{N}\right\}$ the set of (positive) cubes.

Define $A=\{x+y \mid x \in S$ and $y \in C\}$.
Then
In words: A is the set of integers which can be written as the sum of a positive square and a positive cube.

Pattern: $A=\{2,5,9,10,12,17,24, \ldots\}$
Set-Builder:
$A=\left\{n \in \mathbb{N} \mid\right.$ there exist $a, b \in \mathbb{N}$ such that $\left.n=a^{2}+b^{3}\right\}$

