Subsets
Def: Let A and B be sets. We say A is a subset of B, written $A \subseteq B$, if $x \in A$ implies $x \in B$.

That is, $A \subseteq B$ means every element of A is also an element of B.

Can write as $(\forall x \in A)(x \in B)$

$$
\text { or }(\forall x)[x \in A \Rightarrow x \in B]
$$

Ex: $\cdot\{2,3,5\} \subseteq\{1,2,3,4,5\}$

- $\mathbb{N} \subseteq \mathbb{Z}$
- $\mathbb{Z} \subseteq \mathbb{Q}$
- $\mathbb{Q} \subseteq \mathbb{R}$

Ex: Any time we use set-builder notation to

$$
A=\{x \in B \mid P(x)\},
$$

we have $A \subseteq B$.

Tho: For every set $A, \varnothing \subseteq A$.
Proof: The sentence $x \in \varnothing$ is always false. Thus,

$$
x \in \varnothing \Rightarrow x \in A
$$

is always true, so $\varnothing \subseteq A$.

Thu: For every set $A, A \subseteq A$.
Proof: The sentence

$$
x \in A \Rightarrow x \in A
$$

is time for all x, so $A \subseteq A$.

Def: Let A and B be sets. We say $A=B$ if $A \subseteq B$ and $B \subseteq A$.

So to prove $A=B$, we usually have to prove 2 things:

$$
\begin{array}{ll}
\text { - } A \leqslant B & (x \in A \Rightarrow x \in B) \\
-B \leqslant A & (x \in B \Rightarrow x \in A)
\end{array}
$$

The: Let A and B be sets. Then $A=B$ if and only if $(x \in A \Leftrightarrow x \in B)$ for all x.

Proof: $A=B$ is logically equivalent to

$$
\begin{aligned}
&(A \subseteq B) \wedge(B \subseteq A) \\
& \equiv(\forall x)(x \in A \Rightarrow x \in B) \wedge(\forall x)(x \in B \Rightarrow x \in A) \\
& \equiv(\forall x)[(x \in A \Rightarrow x \in B) \wedge(x \in B \Rightarrow x \in A)] \\
& \equiv(\forall x)[x \in A \Leftrightarrow x \in B] . \\
& \text { since }[(\forall x) P(x)] \wedge[(\forall x) Q(x)] \equiv(\forall x)[P(x) \wedge Q(x)]
\end{aligned}
$$

Ex: Let's prove

$$
\underbrace{\left\{x \in \mathbb{Z} \mid x^{2}=1\right\}}_{=A}=\frac{\{1,-1\}}{=B}
$$

We must prove $A \subseteq B \quad(x \in A \Rightarrow x \in B)$ and $B \subseteq A \quad(x \in B \Rightarrow x \in A)$.

Prof: ($\subseteq)$ Let $x \in A$. Then $x \in \mathbb{Z}$ and

$$
\begin{aligned}
x^{2}=1 . & \text { So } \\
x^{2}-1 & =0 \\
(x-1)(x+1) & =0
\end{aligned}
$$

Thus, $x=1$ or $x=-1$, so $x \in B$.
(2) Let $x \in B$. Then $x=1$ or $x=-1$. Either way, $x \in \mathbb{Z}$ and $x^{2}=1$, so $x \in A$.

Def: Let A and B be sets. We say A is a proper subset of B, written $A \subseteq B$, if $A \subseteq B$ and $A=B$.

So $A \subseteq B$ means

$$
(\forall x)(x \in A \Rightarrow x \in B) \wedge(\exists y)\left(y \in B \wedge y^{\sharp A}\right) \text {. }
$$

Warning: Some people use c instead of \subseteq. c does not mean proper subset.

Warning: ϵ vs. \subseteq
Ex: $\quad 1 \in\{1,2,3\}$ is time
$\{1\} \in\{1,2,3\}$ is false
$\{1\} \subseteq\{1,2,3\}$ is the
$1 \subseteq\{1,2,3\}$ moles no sense
Ex: $\varnothing \leqslant \varnothing$ (became $\varnothing \leqslant A$ for even g set A) but $\varnothing \not \subset \varnothing$ (because $x \in \phi$ is always false)

Ex: Consider $\{\varnothing\}$, the set whore only element is ϕ. Then $\phi \in\{\varnothing\}$ and $\varnothing \leq\{\varnothing\}$.

Algebra of Sets
Def: Let A and B be sets.
(1) The union of A and B is the set

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} \text {. }
$$

(2) The intersection of A and B in the set

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\} \text {. }
$$

(3) The relative complement of B in A is the set

$$
A \backslash B=\{x \mid x \in A \text { and } x \notin B\} \text {. }
$$

${ }^{\tau}$ Also called set difference
Pictures:

$A \cup B$

$A \cap B$

$A \backslash B$

Ex: Let $E=\{n \in \mathbb{N} \mid n$ is ever $\}$

$$
=\{2,4,6,8, \ldots\}
$$

and

$$
\begin{aligned}
P & =\{p \in \mathbb{N} \mid p \text { is prime }\} \\
& =\{2,3,5,7,11, \ldots\}
\end{aligned}
$$

- $E \cup P=\{n \in \mathbb{N} \mid n$ is even or prime $\}$

$$
=\{2,3,4,5,6,7,8,10,11,12,13,17, \ldots\}
$$

- $E \cap P=\{n \in \mathbb{N} \mid n$ is even and prime $\}$

$$
=\{2\}
$$

- $E \backslash P=\{4,6,8,10, \ldots\}$
- $P \backslash E=\{3,5,7,11, \ldots\}$
- $\mathbb{N} \backslash E=\{n \in \mathbb{N} \mid n$ is old $\}$

$$
=\{1,3,5,7, \ldots\}
$$

- $E \backslash \mathbb{N}=\varnothing$

