Subsets

 $\frac{Def}{A}: Let A and B be sets. We say$ $A is a <u>subset</u> of B, written <math>A \subseteq B$, if $x \in A$ implies $x \in B$. That is, $A \in B$ means every element of A is also an element of B. Can write as (VxEA)(xEB) or (\frac{\frac{2}{x}}{x}) [x \varepsilon A = \frac{2}{x} \varepsilon B] $E_{x}: \cdot \{2, 3, 5\} \subseteq \{1, 2, 3, 4, 5\}$ • Z = Q • Q = R

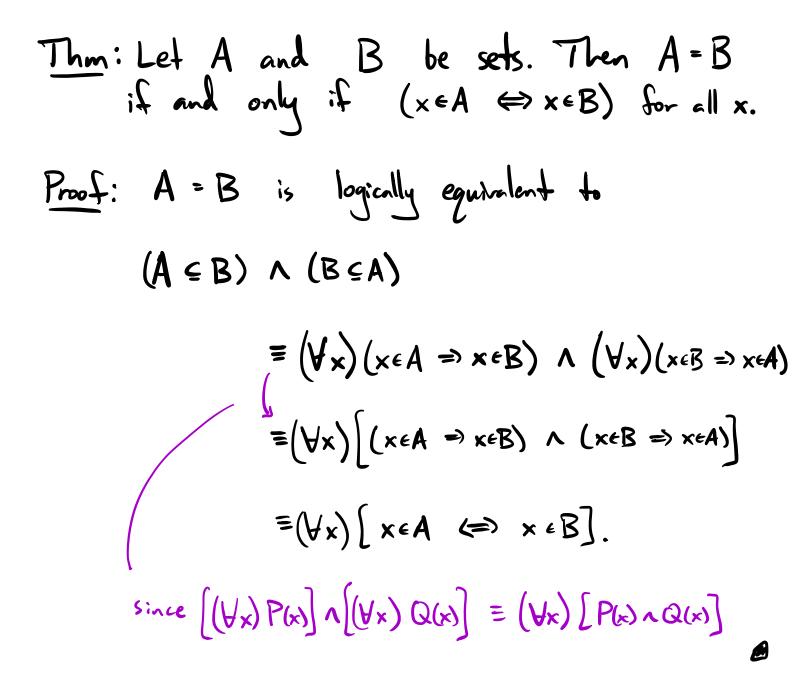
Ex: Any time we use set-builder notation to write $A = \{x \in B \mid P(x)\},\$ we have $A \in B$.

Thm: For every set
$$A$$
, $\emptyset \in A$.
Proof: The sentence $x \in \emptyset$ is always follow.
Thus,
 $x \in \emptyset \implies x \in A$
is always true, so $\emptyset \in A$.

Thm: For every set A,
$$A \in A$$
.
Proof: The sentence
 $x \in A \implies x \in A$
is the for all x, so $A \in A$.

$$\underline{Def}$$
: Let A and B be sets. We say $\underline{A} = B$
if $A \subseteq B$ and $B \subseteq A$.

So to prove
$$A = B$$
, we usually have to prove
2 things:
• $A \in B$ (x $\in A \Rightarrow$ x $\in B$)
• $B \in A$ (x $\in B \Rightarrow$ x $\in A$)



Ex: Let's prove

$$\frac{\{x \in \mathbb{Z} \mid x^2 = 1\}}{=A} = \frac{\{1, -1\}}{=B}$$
We must prove $A \in B$ $(x \in A \Rightarrow x \in B)$
and $B \in A$ $(x \in B \Rightarrow x \in A)$.
Prof: (=) Let $x \in A$. Then $x \in \mathbb{Z}$ and $x^2 = 1$. So
 $x^2 - 1 = 0$
 $(x - 1)(x + 1) = 0$.
Thus, $x = 1$ or $x = -1$, so $x \in B$.
(=) Let $x \in B$. Then $x = 1$ or $x = -1$.
Either way, $x \in \mathbb{Z}$ and $x^2 = 1$,
so $x \in A$.

í.

Def: Let A and B be sets. We say
A is a proper subset of B,
written
$$A \in B$$
, if $A \in B$ and $A = B$.
So $A \notin B$ means
 $(\forall x)(x \in A \Rightarrow x \in B) \land (\exists y)(y \in B \land y \notin A)$.
Warning: Some people use C instand of C .
 C does not mean proper subset.
Warning: $E \lor S \in C$
Ex: $I \in \{1, 2, 3\}$ is true
 $\{1\} \in \{1, 2, 3\}$ is true
 $\{1\} \in \{1, 2, 3\}$ is true
 $I \in \{2, 3\}$ is true
 $I \in \{2, 3\}$ is diverse in sense
Ex: Consider $\{\emptyset\}$, the set whose only element is \emptyset .
Then $\emptyset \in \{\emptyset\}$ and $\emptyset \in \{\emptyset\}$.

Ex: Let
$$E = \{ \{n \in IN \mid n \text{ is even} \} \}$$

= $\{ \{2, 4, 6, 8, ... \} \}$
and
 $P = \{ \{p \in IN \mid p \text{ is prime} \} \}$
= $\{ \{2, 3, 5, 7, 11, ... \} \}$
• $E \cup P = \{ n \in IN \mid n \text{ is even or prime} \} \}$
= $\{ \{2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 17, ... \} \}$
• $E \cap P = \{ n \in IN \mid n \text{ is even and prime} \} \}$
= $\{ 2 \}$
• $E \setminus P = \{ 1, 6, 8, 10, ... \} \}$
• $P \setminus E = \{ 3, 5, 7, 11, ... \}$
• $N \setminus E = \{ n \in IN \mid n \text{ is odd} \} \}$
= $\{ 1, 3, 5, 7, ... \}$