Therefore, $x \in A \Rightarrow x \in C$ for every x, so $A \subseteq C$.

$$\frac{\text{Thm} (\text{DeMoryan Laws for sets}):}{\text{Let } A, B, \text{ and } S \text{ be sets. Then}}$$

$$(i) S \setminus (A \cup B) = (S \setminus A) \cap (S \setminus B).$$

$$(ii) S \setminus (A \cap B) = (S \setminus A) \cup (S \setminus B).$$

Then (Associativity of U and
$$\cap$$
):
Let A, B, and C be sets. Then
(i) (A U B) UC = A U (BUC)
(ii) (A N B) NC = A N (B N C).

Sets of sets

Notation: We'll often use a script letter to denote a set of sets - i.e. a set, all of whose elements are sets.

Def: Let \mathcal{A} be a set of sets. Then $U_{A\in\mathcal{A}} A = \{ \{ x \mid (\exists A\in\mathcal{A}) (x\in A) \} \}$ $O_{A\in\mathcal{A}} A = \{ x \mid (\forall A\in\mathcal{A}) (x\in A) \}$

Note: The book writes UA for UA and NA for MA.

Ex: Let
$$A = \{ \{1, 2\}, \{2, 3\}, \{2, 5, 6\} \}$$
. Then
 $\bigcup A = \{ 1, 2\} \cup \{2, 3\} \cup \{2, 5, 6\} = \{ 1, 2, 3, 5, 6\}$
and
 $\bigcap A = \{ 1, 2\} \cap \{2, 3\} \cap \{2, 5, 6\} = \{2\}$.

A&A

E_x: Let
$$A_n = \{k \in N \mid k \ge n\}$$
 So $A_1 = \{1, 2, 3, ...\} = IN$
 $= \{n, n+1, n+2, ...\}$
 $A_2 = \{2, 3, 4, ...\}$
 $= \{3, 4, 5, ...\}$

Set
$$A = \{A_n \mid n \in IN\}$$

= $\{A_1, A_2, A_3, \dots\}$. A set with infinitely many
clements, each of which is a set

$$U_{A\in A} = \bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup A_3 \cup \dots = N.$$

Proof: Let $x \in \bigcup_{n=1}^{\infty} A_n$. Then $x \in A_n$ for some n .
But $A_n \in N$, so $x \in N$. Thus, $\bigcup_{i=1}^{\infty} A_i \in N.$
On the other hand, let $x \in N$. Since
 $N = A_1, \quad x \in \bigcup_{n=1}^{\infty} A_n$. Thus, $N = \bigcup_{n=1}^{\infty} A_n$.

$$\bigcap_{A \in \mathcal{L}} A = \bigcap_{n=1}^{\infty} A_n = A_1 \cap A_2 \cap A_3 \cap \cdots = \varphi.$$

Proof: Suppose
$$x \in \bigcap_{n=1}^{\infty} A_n$$
. Then $x \in A_n$ for
every n. In particular, $x \in A_1 = N$.
But then $x \notin A_{x+1}$, which contradicts
 $x \in A_n$ for all $n \in N$.
So $\bigcap_{n=1}^{\infty} A_n$ must be empty.