Warm-Up: Let P, Q be sentences.

Find a sentence using only the logical connectives — and Λ which is logically equivalent to PVQ.

De Morgan tells us how - interacts with Un and V.

How do 1 and V interact with each other?

Thm (Distributive Laws) Let P, Q, R be sentences. Then

- (a) $P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$
- (b) $P \vee (Q \wedge R) = (P \vee Q) \wedge (P \vee R)$

Ex: P = "It is a nice day" Q = "I will go for a wolk" R = "I will eat outside"

Proof of (b): We vent to show these two sentences always have the same truth value.

First, suppose PV (QAR) is true. Then either

· P is true

· Q A R is true, which mems both Q and R

are true

In either case, PVQ is the and PVR is the, so (PVQ) 1 (PVR) is the.

The other possibility is that PV (QAR) is false. This means that both

· P is Inlse

· QAR is false, which in turn means at least one of Q or R is false.

3nt then at least one of PVQ or PVR is fulse. So (PVQ) 1 (PVR) is fulse.

As a truth table:

P	Q	R	Q1R	PV(QAR)	PVQ	PVR	(PVQ)1(PVR)
7	7	-1	+	4	7	+	_
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	+	T	T	T	1	7	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	L	F	F	F	F	F

Another logical connective:

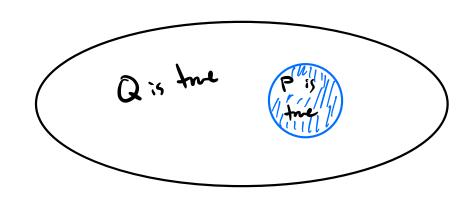
P => Q menns "if P is true, then Q is true"

P	Q	$P \Rightarrow Q$
T	7	7
T	F	F
F	T	T
F	F	T

Why do the last 2 rows make sense?

Another perspective:

P=>Q is true when Q is "at least as true" as P.



Ex: If it's raining, then the ground is not. T

If x=3, then $x^2=9$. T

If $x^2=9$, then x=3. F

If 0>1, then $3^2=9$. T

If 0>1, then the sun will explode today at 5 pm.

Note: • If P is false, then P => Q is true.

• If Q is true, then P => Q is true.

In fact,

Prop: Let P and Q be sentences. Then $P \Rightarrow Q = -P \vee Q$

Proof: The only situation in which P=>Q
is false is if P is true and
Q is false.

This is precisely when ¬PVQ is false.

In all other cases, both P=DQ and ¬P vQ are true.

Alternatively,

P	Q	P⇒Q	٦P	¬P v Q
T	T	_	F	7
T	F	F	F	F
F	T	T	T	7
F	F	T	T	T

Corollary:
$$\neg(P \Rightarrow Q) = P \land \neg Q$$

 $P_{roo}f: \neg(P \Rightarrow Q) = \neg(\neg P \lor Q)$
 $= \neg(\neg P) \land \neg Q$ (DeMorgan)
 $= P \land \neg Q$ (Double negation)

Ex: The negation of

"If it is Wednesday, then I will attend class"

is logically equivalent to

"It is Wednesday and I will not attend class."