Ex: Let $B_{n}=\left[\frac{1}{n}, 2\right]$ for each $n \in \mathbb{N}$.

$$
\begin{array}{lc:c}
B_{1}=[1,2] & 0 & 2 \\
B_{2}=\left[\frac{1}{2}, 2\right] & 0 & 2 \\
B_{3}=\left[\frac{1}{3}, 2\right] & 0 & 2
\end{array}
$$

Then $\bigcap_{n=1}^{\infty} B_{n}=[1,2]$.
Proof: Left to you.
And $\bigcup_{n=1}^{\infty} B_{n}=(0,2]$.
Proof: Each $B_{n} \subseteq(0,2], \begin{array}{ll}\text { so } \\ \text { n } \\ \text { nay? }\end{array} \bigcup_{n=1}^{\infty} B_{n} \subseteq(0,2]$
Now, let $x \in(0,2]$.
By the Archimedean Property (Bonus Problem \#6), there exists $m \in \mathbb{N}$ such that $\frac{1}{m}<x$.

Thus, $x \in B_{m}=\left[\frac{1}{m}, 2\right]$, and so $x \in \bigcup_{n=1}^{\infty} B_{n}$. That is $(0,2] \subseteq \bigcup_{n=1}^{\infty} B_{n}$.

Ex: Similarly, if $C_{n}=\left(-\frac{1}{n}, 2\right]$, then

$$
\bigcup_{n=1}^{\infty} C_{n}=(-1,2] \text { and } \bigcap_{n=1}^{\infty} C_{n}=[0,2] .
$$

Thu: Let A be a non-empty set of sets. Let $A_{0} \in \mathcal{A}$. Then

$$
\bigcap_{A \in R} A \subseteq A_{0} \subseteq \underset{(2)}{\subseteq} \bigcup_{A \in A} A .
$$

Proof : (1) Let $x \in \bigcap A \in A$. Then for all $A \in A, x \in A$. In particular, $x \in A_{0}$. Thus, $\bigcap_{A \in A} A \subseteq A_{0}$.
(2) Let $x \in A$. Then there exists some $A \in \mathcal{A}$ such that $x \in A$, because ne could take $A=A_{0}$. This means $x \in \bigcup_{A \in A} A$. Therefore, $A_{0} \subseteq \bigcup_{A \in A} A$.

Thu (Generalized DeMorgan Laws for sets):
Let S be a set and let A be a set of sets.
Then
(i) $S \backslash\left(\bigcup_{A \in A} A\right)=\bigcap_{A \in A}(S \backslash A)$
(ii) $S \backslash\left(\bigcap_{A \in A} A\right)=\bigcup_{A \in A}(S \backslash A)$.

Thu (Generalized Distributive Lows for sets):
Let S be a set and let A be a set of sets. Then
(i) $\operatorname{Sn}\left(\bigcup_{A \in A} A\right)=\bigcup_{A \in A}(S \cap A)$
(ii) $S \cup\left(\bigcap_{A \in A} A\right)=\bigcap_{A \in A}(S \cup A)$.

The Power Set
Def: Let A be a set. The power set of A, denoted $P(A)$ is the set of all subsets of A.

$$
P(A)=\{S \mid S \subseteq A\} \text {. }
$$

Ex: $A=\{1,2\}$. Then $P(A)=\{\phi,\{13,\{2\},\{1,2\}\}$.

If A has n elements, then $P(A)$ has 2^{n} elements.

Ordered Pairs
"Def": An ordered pair is a list of two objects in order.
If a and b are objects, then (a, b) denotes the ordered pair with first entry a and second entry 6 .

What do ce mean by "in order"?

Fundamental Property: $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.

Ex:- If $a \neq b$, then $(a, b) \neq(b, a)$.

- For any $a,(a, a)$ is a perfectly fine ordered pair.

Compare with sets:

$$
\begin{aligned}
\text { - }\{a, b\} & =\{b, a\} \\
\cdot\{a, a\} & =\{a\}
\end{aligned}
$$

Aside: There is an "implementation" of ordered pairs as sets. To do this, define

$$
(a, b)=\{\{a\},\{a, b\}\} .
$$

Then you can prove that $(a, b)=(c, d) \Leftrightarrow a=c$ and $b=d$.

Cartesian Products
Def: Let A and B be sets. The Cartesian product of A and B is the set

$$
A \times B=\{(a, b) \mid a \in A, b \in B\} .
$$

Ex: Let $A=\{a, b, c\}$ and $B=\{2,4\}$. Then

$$
A \times B=\{(a, 2),(a, 4),(b, 2),(b, 4),(c, 2),(c, 4)\} .
$$

We unite $A^{2}=A \times A$.

Ex: $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y) \mid x \in \mathbb{R}$ and $y \in \mathbb{R}\}$ is the usual Cartesian plane.

Ex:

$$
\begin{aligned}
& \mathbb{N} \times \mathbb{Z}=\{(m, n) \mid m \in \mathbb{N}, n \in \mathbb{Z}\} . \\
& \mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}=\{(m, n) \mid m \in \mathbb{Z}, \\
&n \in \mathbb{Z}\} .
\end{aligned}
$$

Picture:

Note that $\mathbb{N} \times \mathbb{Z} \subseteq \mathbb{Z}^{2} \subseteq \mathbb{R}^{2}$.

For sets A, B, C, we can similarly define

$$
A \times B \times C=\underset{\substack{\text { ordered tuples }}}{\{(a, b, c) \mid a \in A, b \in B, c \in C\} .}
$$

More generally, we can define the Cartesian product of n sets to be the set of ordered n-tuples.

$$
\text { Ex: } \begin{aligned}
\mathbb{R}^{3} & =\mathbb{R} \times \mathbb{R} \times \mathbb{R}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\} . \\
& \mathbb{R}^{n}=\underbrace{\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}}_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \text { each } x_{i} \in \mathbb{R}\right\} .
\end{aligned}
$$

