Functions

- Def: Let A and B be sets. A function $f:A \rightarrow B$ is a rule which associates to each $x \in A$ an element $f(x) \in B$.
 - A is the domain of f, written A = Dom(f). (the set of all valid inputs) We might say f is a <u>function on A</u>.
 - B is the target or <u>codomain</u> of f. (a set containing all possible outputs)
 - For x ∈ A, f(x) is the value of f at x. [fis the function, f(x) is an element of B]
 - The word map is a synonym for function.

Note that to define a function, ve must specify both the domain and the target.

Graphs

Def: Let $f: A \rightarrow B$ be a function. The graph of f is $Graph(f) = \{(x,y) \in A \times B \mid y = f(x)\}.$

<u>Observe</u>: For each x ∈ A, there is a <u>unique</u> y ∈ B such that (x,y) ∈ Graph(f), namely y=f(x). "vertical line test"

Informally,
$$Rng(f)$$
 is the set of all function
values.
Equivalently,
 $Rng(f) = \{y \in B \mid (x,y) \in Graph(f)\}$

Ex: Let
$$A = \{a, b, c, d\}$$
. Define $f: A \rightarrow Z$ by
 $f(a) = 2$, $f(b) = 3$, $f(c) = 1$, $f(d) = 1$.

When the domain is finite, like
it is here, we can represent the
$$\begin{array}{c} x & f(x) \\ x & f(x) \\ a & 2 \\ b & 3 \\ c & 1 \end{array}$$

 $Rng(f) = \{1, 2, 3\} \subseteq \mathbb{Z}$. $d = 1$

Ex: Consider the functions

$$f: \mathbb{R} \longrightarrow \mathbb{R} \quad \text{given by} \quad f(x) = x^{2}$$

$$g: \mathbb{R} \longrightarrow [0,\infty) \quad \cdots \quad g(x) = x^{2}$$

$$h: \mathbb{R} \longrightarrow [-2,\infty) \quad \cdots \quad h(x) = x^{2}$$

$$i: [0,\infty) \rightarrow [0,\infty) \quad \cdots \quad i(x) = x^{2}$$

$$j: [1,2] \longrightarrow \mathbb{R} \quad \cdots \quad j(x) = x^{2}$$

$$k: [1,2] \rightarrow [1,4] \quad \cdots \quad k(x) = x^{2}$$

Q: Why can't we add $l: [1,3] \rightarrow [1,5]$ given by $l(x) = x^2$ to this list?

$$f = g \iff Graph(f) = Graph(g)$$

Ex: Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be given by $f(x) = x^2$.
Then $\operatorname{Rng}(f) = [0, \infty)$.
Proof: (=) Let $y \in \operatorname{Rng}(f)$. Then $y \in \mathbb{R}$ and $y = f(x)$
for some $x \in \mathbb{R}$. Thus $y = x^2 \ge 0$,
So $y \in [0, \infty)$.
(2) Let $y \in [0, \infty)$. Then $y \ge 0$, so $\sqrt{y} \in \mathbb{R}$.
Set $x \in \sqrt{y}$. We have
 $f(x) = x^2 = (\sqrt{y})^2 = y$,
which shows that $y \in [0, \infty)$.

Function Composition
Def: Let
$$f: A \rightarrow B$$
 and $g: B \rightarrow C$
be functions. The composition of
 g with f is the function
 $gof: A \rightarrow C$
given by
 $(gof)(a) = g(f(a))$ "g after f "
for all $a \in A$.

Ex:
$$f: \mathbb{R} \to \mathbb{R}$$
 given by $f(x) = 2^{x}$
 $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = x^{2}$.
Then $(g \circ f)(x) = (2^{x})^{2} = 2^{2x} = 4^{x}$
and $(f \circ g)(x) = 2^{(x^{2})}$
 $g \circ f \neq f \circ g$, since $(g \circ f)(1) = 4$
 $(f \circ g)(1) = 2$
Order matters

