Functions
Def: Let A and B be sets. A function $f: A \rightarrow B$ is a rule which associates to each $x \in A$ an element $f(x) \in B$.

- A is the domain of f, written $A=\operatorname{Dom}(f)$. (the set of all valid inputs)
We might say f is a function on A.
- B is the target or codomsin of f. (a set containing all possible outputs)
- For $x \in A, f(x)$ is the value of f at x. [f is the function, $f(x)$ is an element of B]
-The word map is a synonym for function.

Note that to define a function, re must specify both the domain and the target.

Graphs
Def: Let $f: A \rightarrow B$ be a function. The graph of f is

$$
\operatorname{Graph}_{\mathrm{m}}(f)=\{(x, y) \in A \times B \quad \mid \quad y=f(x)\} .
$$

Observe: For each $x \in A$, there is a unique $y \in B$ such that $(x, y) \in \operatorname{Graph}(f)$, namely $y=f(x)$. "vertical line test"

Ex: For $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}-2$,

What is this? It's

$$
\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \quad y=x^{3}-2\right\} .
$$

Aside: You can actually use graphs to define what a function is.

Def: Let A and B be sets. A function $f: A \rightarrow B$ is a subset

$$
\operatorname{Graph}(f) \subseteq A \times B
$$

with the property that for all $x \in A$, there exists a unique $y \in B$ such that $(x, y) \in \operatorname{Graph}(f)$.

If $(x, y) \in \operatorname{Graph}(f)$, write $f(x)=y$.

Note: - You don't have to use this definition. But it's more concrete than defining a function as a "rule".

- We cant always draw Graph (f).

Def: Let $f: A \rightarrow B$ be a function. The range of f, denoted $\operatorname{Rng}(f)$, is the set

$$
\operatorname{Rng}(f)=\{y \in B \mid f(x)=y \text { for some } x \in A\} \text {. }
$$

Note: $R_{n g}(f) \subseteq B$ automatically.
Informally, $R_{n g}(f)$ is the set of all function values.
Equivalently,

$$
\operatorname{Rng}(f)=\{y \in B \mid(x, y) \in \operatorname{Graph}(f)\}
$$

Ex: Let $A=\{a, b, c, d\}$. Define $f: A \rightarrow \mathbb{Z}$ by

$$
f(a)=2, \quad f(b)=3, \quad f(c)=1, \quad f(d)=1 .
$$

When the domain is finite, like it is here, we can represent the function as a table.

$$
\operatorname{Rng}(f)=\{1,2,3\} \leq \mathbb{Z}
$$

Ex: Consider the functions

$$
\begin{array}{lll}
f: \mathbb{R} \rightarrow \mathbb{R} & \text { given by } & f(x)=x^{2} \\
g: \mathbb{R} \rightarrow[0, \infty) & g(x)=x^{2} \\
h: \mathbb{R} \rightarrow[-2, \infty) & h(x)=x^{2} \\
i:[0, \infty) \rightarrow[0, \infty) & i(x)=x^{2} \\
j:[1,2] \rightarrow \mathbb{R} & j(x)=x^{2} \\
k:[1,2] \rightarrow[1,4] & & k(x)=x^{2}
\end{array}
$$

Q: Why cant we add
$l:[1,3] \rightarrow[1,5]$ given by $l(x)=x^{2}$ to this list?

Def: We say two functions f and g are equal if
(1) $\operatorname{Dom}(f)=\operatorname{Dom}(g)$
(2) For even g $x \in \operatorname{Dom}(f), f(x)=g(x)$.

In this case we write $f=g$. Tequality of values
t equality of
functions

$$
f=g \quad \Leftrightarrow \quad \operatorname{Graph}(f)=\operatorname{Graph}(g)
$$

Ex: In the previous example, we have 3 functions up to equality: $f=g=h, i$, and $j=k$.

Ex: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$. Then $\operatorname{Rag}(f)=[0, \infty)$.

Proof: (\Leftrightarrow) Let $y \in \operatorname{Rng}(f)$. Then $y \in \mathbb{R}$ and $y=f(x)$ for some $x \in \mathbb{R}$. Thus $y=x^{2} \geq 0$, So $y \in[0, \infty)$.
(2) Let $y \in[0, \infty)$. Then $y \geq 0$, so $\sqrt{y} \in \mathbb{R}$. Set $x \in \sqrt{y}$. We have

$$
f(x)=x^{2}=(\sqrt{y})^{2}=y_{1}
$$

which shows that $y \in[0, \infty)$.

Function Composition
Def: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. The composition of g with f is the function

$$
g \circ f: A \rightarrow C
$$

given by

$$
(g \circ f)(a)=g(f(a)) \quad " g \text { after } f "
$$

for all $a \in A$.

Ex: $\quad \begin{aligned} & f: \mathbb{R} \rightarrow \mathbb{R} \\ & g: \mathbb{R} \rightarrow \mathbb{R}\end{aligned}$ given by $f(x)=2^{x}$
$g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=x^{2}$.
Then $\left(g^{\circ f}\right)(x)=\left(2^{x}\right)^{2}=2^{2 x}=4^{x}$
and

$$
(f \circ g)(x)=2^{\left(x^{2}\right)}
$$

$$
g \circ f \neq f \circ g, \quad \text { since } \quad \begin{aligned}
& (g \cdot f)(1)=4 \\
& (f \circ g)(1)=2
\end{aligned}
$$

Order matters!

Note: -Read compositions from right to left

- Sometimes, oof is defined but fog is not

Picture:
(A) $\underset{g \circ f}{f}(B) \xrightarrow{g}(C)$

Thu: Let $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$ be functions. Then

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

Proof idea: Both are given by $x \mapsto h(g(f(x)))$.

