$$\frac{\text{Warm-Up}: Prove \quad \text{Hhat } \text{He function}}{f: N \longrightarrow N \setminus \{1\}}$$
is a bijection.

Thm: Let
$$f:A \rightarrow B$$
 be a bijection and let
 $f^{-1}:B \rightarrow A$ be its inverse. Then
and ① $f^{-1}\circ f = id_A: A \rightarrow A$
@ $f \circ f^{-1} = id_B: B \rightarrow B$
This is essentially a rephrasing of the fundamental
identity $f^{-1}(y) = x \iff F(x) = y$.

Proof: (1) Let
$$x \in A$$
. We must show
 $(f^{-1} \circ f)(x) = id_A(x) = x$.
Set $y = f(x)$. Then, by definition of f^{-1} ,
 $f^{-1}(y) = x$. But then
 $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x$.

(2) Let
$$y \in B$$
 We must show
 $(f \circ f^{-1})(y) = id_{B}(y) = y.$
Set $x = f^{-1}(y)$. Then $f(x) = y$, so
 $(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y.$

Cor: Let
$$f: A \rightarrow B$$
 be a bijection. Then its inverse $f^{-1}: B \rightarrow A$ is also a bijection, and $(f^{-1})^{-1} = f$.

Proof: Let f:A→B be a bijection.

•
$$f^{-1}$$
 is surjective: Let $x \in A$.
We must find yeb so that $f^{-1}(y) = x$.
Set $y = f(x)$. Then, by the theorem,
 $f^{-1}(y) = f^{-1}(f(x)) = x$.

•
$$f^{-1}$$
 is injective: Let $y_1, y_2 \in B$ such
that $f^{-1}(y_1) = f^{-1}(y_2)$.
Then
 $f(f^{-1}(y_1)) = f(f^{-1}(y_2))$,
so by the theorem,
 $y_1 = y_2$.

•
$$(\underline{f^{-1}})^{-1} = \underline{f}$$
: By definition, for $x \in A$ and $y \in B$,
 $(\underline{f^{-1}})^{-1}(x) = \underline{y} \iff x = \underline{f^{-1}}(\underline{y}) \iff f(x) = \underline{y}$.
Thus, $(\underline{f^{-1}})^{-1} = \underline{f}$.

Thm: Let
$$f: A \rightarrow B$$
 and $g: B \rightarrow A$ be functions.
If
 $g \circ f = id_A$ and $f \circ g = id_B$,
then f is a bijection and $g = f^{-1}$.

Thm: If
$$f: A \rightarrow B$$
 and $g: B \rightarrow C$ are
bijections, then $g \circ f: A \rightarrow C$ is a
bijection also, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Book: A and B are <u>equinumerons</u>, $\overline{\overline{A}} = \overline{\overline{B}}$.

If A is a set and neW such that
A and
$$\{1,2,...,n\}$$
 have the same cardinality,
then we say A has cardinality n (or A has
exactly n elements), and write $|A| = n$.
We also write $|\emptyset| = 0$.

Thm: Let A, B, C be sets. Then

1 |A| = |A|. [Reflexive]
2 If |A| = |B|, Hen |B| = |A|. [Symmetric]
3 If |A| = |B| and |B| = |C|, Hen |A| = |C|. [Transitive]