Warm-Up: Prove that the function
$f: \mathbb{N} \longrightarrow \mathbb{N} \backslash\{1\}$
is a bijection.

Thu: Let $f: A \rightarrow B$ be a bijection and let $f^{-1}: B \rightarrow A$ be its inverse. Then
(1) $f^{-1} \circ f=i d_{A}: A \rightarrow A$
(2) $f \circ f^{-1}=i d_{B}: B \rightarrow B$

This is essentially a rephrasing of the fundamental identity $f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y$.

Proof: (1) Let $x \in A$. We must show

$$
\left(f^{-1} \circ f\right)(x)=i d_{1}(x)=x .
$$

Set $y=f(x)$. Then, by definition of f^{-1}, $f^{-1}(y)=x$. But then

$$
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(y)=x .
$$

(2) Let $y \in B$ we must show

$$
\left(f \circ f^{-1}\right)(y)=i d_{B}(y)=y .
$$

Set $x=f^{-1}(y)$. Then $f(x)=y$, so

$$
\left(f \circ f^{-1}\right)(y)=f\left(f^{-1}(y)\right)=f(x)=y .
$$

Cor: Let $f: A \rightarrow B$ be a bijection. Then its inverse $f^{-1}: B \rightarrow A$ is also a bijection, and $\left(f^{-1}\right)^{-1}=f$.

Proof: Let $f: A \rightarrow B$ be a bijection.

- f^{-1} is surjective: Let $x \in A$.

We must find $y \in B$ so that $f^{-1}(y)=x$. Set $y=f(x)$. Then, by the theorem,

$$
f^{-1}(y)=f^{-1}(f(x))=x .
$$

- f^{-1} is injective: Let $y_{1}, y_{2} \in B$ such that $f^{-1}\left(y_{1}\right)=f^{-1}\left(y_{2}\right)$.
Then

$$
f\left(f^{-1}\left(y_{1}\right)\right)=f\left(f^{-1}\left(y_{2}\right)\right),
$$

so by the theorem,

$$
y_{1}=y_{2} .
$$

- $\left(f^{-1}\right)^{-1}=f$: By definition, for $x \in A$ and $y \in B$,

$$
\left(f^{-1}\right)^{-1}(x)=y \Leftrightarrow x=f^{-1}(y) \Leftrightarrow f(x)=y .
$$

Thus, $\left(f^{-1}\right)^{-1}=f$.

The following theorems are proved using similar methods.

Thu: Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. If $g \circ f=i d_{A}$ and $f \circ g=i d_{B}$, then f is a bijection and $g=f^{-1}$.

The: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then $g \circ f: A \rightarrow C$ is a bijection also, and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Cardinality
What does it mem for a set A to have exactly n elements?

Ex: $A=\{4$, red, $\$\}$ has exactly 3 elements How do we know? We can list them:

1. 4
2. red
3. \$

This is just a bijection $f:\{1,2,3\} \rightarrow A$.
surjection \Leftrightarrow every element in A is on the list injection \Leftrightarrow no element in A is on the list more than once.

Def: Let A and B be sets. We say A and B have the same cardinality, denoted $|A|=|B|$, if there exists a bijection $f: A \rightarrow B$.

Book: A and B are equinumerons, $\overline{\bar{A}}=\overline{\bar{B}}$.
If A is a set and $n \in \mathbb{N}$ such that A and $\{1,2, \ldots, n\}$ have the same cardinality, then we say A has cardinality n (or A has exactly n elements), and write $|A|=n$.
We also write $|\varnothing|=0$.

This is an equivalence relation.

Them: Let A, B, C be sets. Then
(1) $|A|=|A|$. [Reflexive]
(2) If $|A|=|B|$, then $|B|=|A|$.
[Symmetric]
(3) If $|A|=|B|$ and
$|B|=|c|$, then $|A|=|c|$.

Proof sketch: (1) id $\begin{aligned} & A: A \rightarrow A \text { is a bijection. } \\ & x \mapsto x\end{aligned}$.
(2) If $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \rightarrow A$ is a bijection.
(3) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijection, then $g \circ f: A \rightarrow C$ is a bijection. (HW22)

