Finite and infinite sets
Def: A set A is finite if

$$A = \emptyset$$
 (\Rightarrow $|A| = 0$
or
 $For some N \in N$, there is a bijection
 $f: \{1, 2, ..., n\} \rightarrow A$. (\Rightarrow $|A| = n$
Think: f lish all elements of A on n lines with no reperts.
Ex: $A = \{4, red, \$\}$. $|A| = 3$
Ex: $B = \{2n, b, c, ..., z\}$. $|B| = 26$
Warm-Up: You probably infurt that IN
is infinite (i.e., not dinite).
Try to prove this.
Hint: Use contradiction.

As me will see, INI=|Q|, but INI + IRI. First, more on finite sets.

Cor: Let A and B be finite sets and
let
$$f:A \Rightarrow B$$
 be a function. Then
① If f is an injection, then $|A| \leq |B|$
② If f is a surjection, then $|A| \geq |B|$
② If f is a surjection, then $|A| \geq |B|$
Proof: ① Suppose $f:A \Rightarrow B$ is injective. Then
 $f:A \rightarrow Rig(f)$
is a bijection. Hence, $|A| = |Rig(f)|$.
But $Rig(f) \leq B$, so $|Rig(f)| \leq |B|$ by the
Theorem. Together, we get $|A| \leq |B|$.
② Suppose $f:A \rightarrow B$ is surjective. Since B
is finite, $|B|=n$ for some $n \in M$, so
we can write
 $B = \sum b_1, b_2, ..., b_3$.
For each $i \in \sum 1, ..., n$, let $a_i \in A$ be such that
 $f(a_i) = b_i$.
If $i \neq j$, then $f(a_i) = b_i \neq b_j = f(a_j)$, so
 $a_i \neq a_j$.

Thus,
$$|\{a_{1},...,a_{n}\}| = n$$
. But $\{a_{1},...,a_{n}\} \in A$,
so $n \leq |A|$. Since $|B|=n$, we have
 $|A| \geq |B|$.

The contrapositive of \bigcirc is the

Pigeonhole Principle: Let A and B be
finite sets and f: $A \rightarrow B$ a function.

If $|A| \geq |B|$, then f is not injective.
 $A - set$ of pigeons
 $B - set$ of pigeons
 $B - set$ of pigeon in a pigeonhole
Then there is a pigeonhole containing
more than one pigeon.

Ex: If $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{Z}$, then the difference
 $a_{1} - a_{1}$ will be divisible by 3 for some $i \neq j$.

Ex: Suppose a people are at a party. Then there are two people who have the same number of friends at the party. 4 Cannot be someone with O friends and someone nith n-1 friends. So possibilities are 0,...,n-2 or 1,...,n-1.