Warm-Up: Can you find a bijection $f: \mathbb{N} \longrightarrow \mathbb{Z}$?

Infinite Sets

We already saw that $f: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{1\}$ $\times \longmapsto \times +1$

is a bijection, so $|N| = |N \setminus \{1\}|$.

Here's another example:

Ex: Let $E = \{n \in \mathbb{N} \mid n \text{ is even}\} = \{2,4,6,8,...\}$. Then

 $g: \mathbb{N} \to \mathbb{E}$ $x \mapsto 2x$

is a bijection. Thus, INI = IEI.

Proof: Let $x_1, x_2 \in \mathbb{N}$. If $f(x_1) = f(x_2)$, then $2x_1 = 2x_2$, so cancelling the 2 gives $x_1 = x_2$. Thus, f is injective.

Let $y \in E$. Then y = 2k for some $k \in \mathbb{N}$ (hhy?) Thus, f(k) = 2k = y. This shows that f is surjective.

So for infinite sets, it's possible to find a bijection f: A -> B (i.e. |A|=|B|) when A & B or B & A.

"Hilbert's Hotel"

Def: A set A is countably infinite if there exists a bijection $f: \mathbb{N} \to A$. That is, if $|A| = |\mathbb{N}|$.

A set is <u>countable</u> if it is finite or countably infinite.

A set is unconntable if it is not countable.

Ex: IN is countably infinite

IN 1813 is countably infinite

E = {neN | n is even} is countably infinite.

Z is countably infinite

Think: Countably infinite sets can be enumerated in an infinite list.

Uncountable sets (if they exist) cannot be listed, even if the list is infinite!

Thm: Let A be a countably infinite set.

Then any subset B \(\in A\) is countable.

Ex: N×N is countably infinite

Key: Write the elements of INXIV in a grid

	ı	2	3	4	5	
1	LUS	(1,2)	4.3)	17,4)	(15)	
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	
3	(1,52)	(3,2)	(2,3)	(3,4)	(35)	
4	(M, 1)	(4,2)	(4,3)	(4,4)	(4,5)	
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	
•						_

Define a bijection $f: IN \rightarrow IN \times IN$ by reading along the northeast diagonals in order:

$$f(2) = (2,1)$$

$$f(3) = (1,2)$$

Ex: The set
$$Q_{20} = \{q \in Q \mid q > 0\}$$
 of positive rational numbers is countably infinite.

Key idea: Each
$$q \in \mathbb{Q}_{>0}$$
 can be written uniquely as $q = \frac{1}{6}$ where

• $a, b \in \mathbb{N}$
and
• $\frac{a}{b}$ is in lowest terms $(\gcd(a,b) = 1)$

Now, use a grid again, but cross out fractions not in lovest terms:

	•	2	3	4	5	
1	-)-	1 2	13	1	- 15	
2)-21-	4	13 23	3	2)5	
3	31	20 M 2 2 M 512		213	15 N/5 N/5 7/5	
4	4-	2	4		4)5	
5	51	25	4)3513	54	(Arr)	
•	•					

Define a bijection g: IN - Q>0 by reading the remaining entries along the northeast diagonals.

$$g(1)=1$$
, $g(2)=2$, $g(3)=\frac{1}{2}$, $g(4)=3$, $g(5)=\frac{1}{3}$, ...

Ex: Q is countably infinite.

Let $g: \mathbb{N} \to \mathbb{Q}_{>0}$ be the bijection above. Define a bijection $h: \mathbb{N} \to \mathbb{Q}$ by

$$h(n) = \begin{cases} 0 & \text{if } n = 1\\ g(\frac{n}{2}) & \text{if } n \text{ is even} \\ -g(\frac{n-1}{2}) & \text{if } n \text{ is odd} \end{cases}$$

So

$$h(1) = 0$$

 $h(2) = g(1) = 1$
 $h(3) = -g(1) = -1$
 $h(4) = g(2) = 2$
 $h(5) = -g(2) = -2$