Warm-Up: Can you find a bijection

$$
f: \mathbb{N} \longrightarrow \mathbb{Z} ?
$$

Infinite Sets

We already saw that

$$
\begin{aligned}
f: \mathbb{N} & \longrightarrow \mathbb{N} \backslash\{1\} \\
x & \longmapsto x+1
\end{aligned}
$$

is a bijection, so $|\mathbb{N}|=|\mathbb{N} \backslash\{1\}|$.

Here's another example:
Ex: Let $E=\{n \in \mathbb{N} \mid n$ is even $\}=\{2,4,6,8, \ldots\}$.
Then

$$
\begin{aligned}
g: & \mathbb{N} \\
x & \mapsto E
\end{aligned}
$$

is a bijection. Thus, $|N|=|E|$.
Proof: Let $x_{1}, x_{2} \in \mathbb{N}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $2 x_{1}=2 x_{2}$, so cancelling the 2 gives $x_{1}=x_{2}$. Thus, f is infective.

Let $y \in E$. Then $y=2 k$ for some $k \in \mathbb{N}$ (why?) Thus, $f(k)=2 k=y$. This shows that f is subjective.

So for infinite sets, it's possible to find a bijection $f: A \rightarrow B \quad($ ie. $|A|=|B|)$ when $A \subset \subset$ or $B \subset A$.
"Hilbert's Hotel"
Def: A set A is countably infinite if there exists a bijection $f: \mathbb{N} \rightarrow A$. That is, if $|A|=|\mathbb{N}|$.

A set is countable if it is finite or countably infinite.

A set is uncountable if it is not countable.

Ex: \mathbb{N} is countably infinite
$\mathbb{N} \backslash\{1\}$ is countably infinite
$E=\{n \in \mathbb{N} \mid n$ is even $\}$ is countably infinite.
\mathbb{Z} is countably infinite

Think: Countably infinite sets can be enumerated in ax infinite list.

Uncountable sets (if they exist) cannot be listed, even if the list is infinite!

Thu: Let A be a countably infinite set. Then any subset $B \leqslant A$ is countable.

Ex: $\mathbb{N} \times \mathbb{N}$ is countably infinite
Key: Write the elements of $\mathbb{N} \times \mathbb{N}$ in a grid

	1	2	3	4	5	\ldots
1	$(1, \pi)$	$(1,2)$	$(4,3)$	$(4,4)$	$(1,5)$	
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	
3	$(3,1)$	$(5,3)$	$(2,3)$	$(3,4)$	$(3,5)$	
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	
\vdots						

Define a bijection $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ by reading along the northeast diagonals in order:

$$
\begin{aligned}
& f(1)=(1,1) \\
& f(2)=(2,1) \\
& f(3)=(1,2) \\
& f(4)=(3,1)
\end{aligned}
$$

Ex: The set $\mathbb{Q}_{>0}=\{q \in \mathbb{Q} \mid q>0\}$ of positive rational numbers is countably infinite.

Key idea: Each $q \in \mathbb{Q}_{>0}$ can be written uniquely as $\quad q=\frac{a}{b}$ where

$$
\cdot a, b \in \mathbb{N}
$$

and

- $\frac{a}{b}$ is in lowest terms $(\operatorname{gcd}(a, b)=1)$

Now, use a grid again, but cross out fractions not in lowest terms:

Define a bijection $g: \mathbb{N} \rightarrow \mathbb{Q}_{>0}$ by reading the remaining entries along the northent diagonals.

$$
g(1)=1, g(2)=2, g(3)=\frac{1}{2}, g(4)=3, g(5)=\frac{1}{3}, \ldots
$$

Ex: \mathbb{Q} is countably infinite.
Let $g: \mathbb{N} \rightarrow \mathbb{Q}_{>0}$ be the bijection above. Define a bijection hi $\mathbb{N} \rightarrow \mathbb{Q}$ by

$$
h(n)= \begin{cases}0 & \text { if } n=1 \\ g\left(\frac{n}{2}\right) & \text { if } n \text { is even } \\ -g\left(\frac{n-1}{2}\right) & \text { if } n \text { is odd }\end{cases}
$$

So

$$
\begin{aligned}
& h(1)=0 \\
& h(2)=g(1)=1 \\
& h(3)=-g(1)=-1 \\
& h(4)=g(2)=2 \\
& h(5)=-g(2)=-2
\end{aligned}
$$

