Uncountability of R

Thm: IRI = INI (R is uncountable)

Step 1: If
$$a,b \in \mathbb{R}$$
 with $a < b$, then $|(a,b)| = |(0,1)|$.

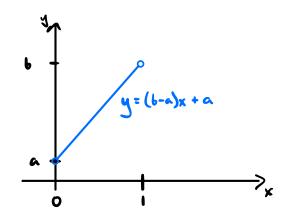
We must give a bijection between (0,1) and (a,b).

A linear function will work:

$$f: (0,1) \rightarrow (a,b)$$

$$x \longmapsto (b-a)x + a$$

Graph:



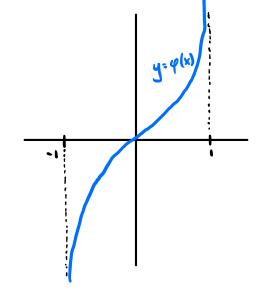
Exercise: Check that f is a bijection.

There are many ways to do this, but we'll use the book's: Define

$$\varphi: (-1,1) \longrightarrow \mathbb{R}$$

$$\times \longmapsto \frac{\times}{1-|x|}$$

Graph:



Exercise: Check that op is a bijection.

(See HW 23 practice problem 2. Basically follows from HW 23 exercise 1.) Step 3: There is no surjection IN - (0,1) (and thus no bijection IN - (0,1)).

Why is this enough? If |M| = |R|, then since |R| = |(-1,1)| and |(-1,1)| = |(0,1)|, transitivity gives |M| = |(0,1)|, a contradiction.

To show this, re use <u>Cantor's Diagonal</u> Argument.

Need: • Every real number has an <u>infinite</u> decimal representation.

eg.
$$\frac{1}{3} = 0.333333333...$$

 $\frac{3}{4} = 0.7500000...$
 $\pi - 3 = 0.14159265...$

· This representation is unique if we don't allow infinite repeating 9s.

e.g.
$$\frac{3}{4}$$
 = 0.749999999 ...
= 0.750000000...

Now, let
$$f:IN \rightarrow (0,1)$$
 be a function.
Think of this as an infinite list:

$$C_1 = f(1) = O. \times_{11} \times_{12} \times_{13} \times_{14} \times_{15} \cdots$$
 $C_2 = f(2) = O. \times_{21} \times_{22} \times_{23} \times_{24} \times_{25} \cdots$
 $C_3 = f(3) = O. \times_{31} \times_{32} \times_{33} \times_{34} \times_{35} \cdots$
 $C_4 = f(4) = O. \times_{41} \times_{42} \times_{43} \times_{44} \times_{45} \cdots$

×nm = mth digit of nth number

Define a number co by

where

$$x_{om} = \begin{cases} 1 & \text{if } x_{mm} \neq 1 \\ 2 & \text{if } x_{mm} = 1 \end{cases}$$

Then $C_6 \in (0,1)$, but

40 or use any other pair of digits not including 9.

 $C_0 \neq C_1$ because $X_{01} \neq X_{11}$ $C_0 \neq C_2$ " $X_{02} \neq X_{22}$ $C_0 \neq C_3$ " $X_{03} \neq X_{33}$ \vdots

Thus, Cox Rng(f), so f is not surjective.

If time: Cantor's Generalized Diagonal Lemma

A similar argument shows that we can always find "larger" infinities.

Def: Let A and B be sets.

- We unite $|A| \leq |B|$ if there exists an injection $A \rightarrow B$.
- · We write |A| < |B| if $|A| \le |B|$ and $|A| \ne |B|$.

Note: This is consistent with what we know about finite sets, where IAI and IBI are non-negative integers.

Ex: |N| < |R|.

Thm (Cantor): Let A be any set. Then |A| < |P(A)|

Note: We've seen that if A is finite, then $|P(A)| = 2^{|A|} > |A|$.

So the interesting (hard) part of this theorem is the case where A is infinite.

Proof: First, consider $g: A \longrightarrow \mathcal{F}(A)$ $x \longmapsto \{x\}$

This is an injection, since $\{x_i\} = \{x_z\}$ if and only if $x_1 = x_z$.

Thus $|A| \leq |P(A)|$.

Next, ne must show |A| # IP(A) |.

Consider any function $f:A \rightarrow P(A)$. So for any $x \in A$, we get a subset $f(x) \subseteq A$. Claim: f is not surjective (Thus, f cannot be a bijection.)

Consider

 $S = \left\{ x \in A \mid x \notin f(x) \right\} \subseteq A.$

Suppose that $S \in Rng(f)$. Then $S = f(x_0)$ for some $x_0 \in A$.

Is x₀ ∈S or x₀ ∉S?

- · If $x_o \in S$, then by definition $x_o \notin f(x_o) = S$, a contradiction.
- If $x_0 \notin S = f(x_0)$, then by definition of S, $x_0 \in S$, a contradiction.

Since both possibilities lead to a contradiction, it must be that $S \notin Rng(f)$. Thus, f is not surjective.

As a result, we get an increasing chain |IN| < |P(IN)| < |P(P(IN))| < -- of ever larger infinities.