Uncountability of \mathbb{R}
The: $|\mathbb{R}| \neq|\mathbb{N}| \quad(\mathbb{R}$ is uncountable)

Step 1: If $a, b \in \mathbb{R}$ with $a<b$, then $|(a, b)|=|(0,1)|$.
We must give a bijection between $(0,1)$ and (a, b).

A linear function will work:

$$
\begin{aligned}
f:(0,1) & \longrightarrow(a, b) \\
x & \longrightarrow(b-a) x+a
\end{aligned}
$$

Graph:

Exercise: Check that f is a bijection.

Step 2: $|\mathbb{R}|=|(-1,1)|$
There are many ways to do this, but nell use the book's: Define

$$
\varphi:(-1,1) \rightarrow \mathbb{R}
$$

$$
x \longmapsto \frac{x}{1-|x|}
$$

Graph:

Exercise: Check that φ is a bijection.
(See HW 23 practice problem 2.
Basically follows from HW 23 exercise 1.)

Step 3: There is no surjection $\mathbb{N} \rightarrow(0,1)$ (and thus no bijection $\mathbb{N} \rightarrow(0,1)$).

Why is this enough? If $|\mathbb{N}|=|\mathbb{R}|$, then since $|\mathbb{R}|=|(-1,1)|$ and $|(-1,1)|=|(0,1)|$, transitivity gives $||N|=|(0,1)|$, a contradiction.

To show this, we use Cantor's Diagonal Argument.

Need: Every real number has an infinite decimal representation.

$$
\text { eg. } \begin{aligned}
\frac{1}{3} & =0.3333333 \cdots \\
\frac{3}{4} & =0.7500000 \cdots \\
\pi-3 & =0.14159265 \cdots
\end{aligned}
$$

- This representation is unique if we don't allow infinite repeating $9 s$.

$$
\text { e.g. } \begin{aligned}
\frac{3}{4} & =0.749999999 \ldots \\
& =0.750000000 \ldots
\end{aligned}
$$

Now, let $f: \mathbb{N} \rightarrow(0,1)$ be a function.
Think of this as an infinite list:

$$
\begin{aligned}
& c_{1}=f(1)=0 . x_{11} x_{12} x_{13} x_{14} x_{15} \cdots \\
& c_{2}=f(2)=0 . x_{21} x_{22} x_{23} x_{24} x_{25} \cdots \\
& c_{3}=f(3)=0 . x_{31} x_{32} x_{33} x_{34} x_{35} \cdots \\
& c_{4}=f(4)=0 . x_{11} x_{12} x_{43} x_{44} x_{45} \cdots
\end{aligned}
$$

$x_{n m}=$ m th digit of nth number
Define a number c_{0} by

$$
c_{0}=0 . x_{01} x_{02} x_{03} x_{04} x_{05} \cdots
$$

where

$$
x_{o m}= \begin{cases}1 & \text { if } \quad x_{m m} \neq 1 \\ 2 & \text { if } \quad x_{m m}=1\end{cases}
$$

4 or use any other pair
of digits not including 9 .
Then $c_{0} \in(0,1)$, but

$$
\begin{array}{ccc}
c_{0} \neq c_{1} & \text { because } & x_{01} \neq x_{11} \\
c_{0} \neq c_{2} & " & x_{02} \neq x_{22} \\
c_{0} \neq c_{3} & " & x_{03} \neq x_{33}
\end{array}
$$

Thus, co\& $R_{n g}(f)$, so f is not surjective.

If time: Cantor's Generalized Diagonal Lemma

A similar argument shows that we can always find "larger" infinities.

Def: Let A and B be sets.

- We unite $|A| \leq|B|$ if there exists an injection $A \rightarrow B$.
- We write $|A|<|B|$ if $|A| \leq|B|$ and $|A| \neq|B|$.

Note: This is consistent with what we know about finite sets, where $|A|$ and $|B|$ are non-negative integers.

Ex: $|\mathbb{N}|<|\mathbb{R}|$.

Thu (Cantor): Let A be any set. Then

$$
|A|<|P(A)|
$$

Note: We've seen that if A is finite, then $|P(A)|=2^{|A|}>|A|$.

So the interesting (hard) part of this theorem is the case where A is infinite.

Proof: First, consider $\begin{aligned} g: A & \longrightarrow P(A) \\ x & \longmapsto\{x\}\end{aligned}$
This is an injection, since $\left\{x_{1}\right\}=\left\{x_{2}\right\}$ if and only if $x_{1}=x_{2}$.
Thus $|A| \leq|P(A)|$.
Next, we must show $|A| \neq|P(A)|$.
Consider any function $f: A \rightarrow P(A)$. So for any $x \in A$, he get a subset $f(x) \subseteq A$.

Claim: f is not surjective (Thus, f cannot be a bijection.)
Consider

$$
S=\{x \in A \quad \mid x \notin f(x)\} \subseteq A .
$$

Suppose that $S \in R_{n g}(f)$. Then $S=f\left(x_{0}\right)$ for some $x_{0} \in A$.

$$
\text { Is } x_{0} \in S \text { or } x_{0} \notin S ?
$$

- If $x_{0} \in S$, then by definition $x_{0} \notin f\left(x_{0}\right)=S$, a contradiction.
- If $x_{0} \notin S=f\left(x_{0}\right)$, then by definition of $S, x_{0} \in S$, a contradiction.

Since both possibilities lead to a contradiction, it must be that $S \notin R_{n g}(f)$. Thus, f is not surjective.

As a result, we get an increasing chain

$$
|\mathbb{N}|<|P(\mathbb{N})|<|P(P(\mathbb{N}))|<\cdots
$$

of ever larger infinities.

