Warm-Up: Use a finth table to show that $P \Rightarrow Q$ is not logically equivalent to $Q \Rightarrow P$.

A sentence of the form $P \Rightarrow Q$ is called a <u>conditional</u> sentence.

Ways to say P => Q:

"P implies Q"
"If P, then Q"
"P is sufficient for Q"
"Q is necessary for P"

In a conditional sentence $P \Rightarrow Q$,

P is the <u>antecedent</u> and Q is

the <u>consequent</u>.

More informally, P is the "assumption" and Q is the "conclusion."

Converse and contrapositive

Let P and Q be sentences.

The converse of $P \Rightarrow Q$ is the sentence

 $Q \Rightarrow P$.

The <u>contrapositive</u> of $P \Rightarrow Q$ is the sentence

 $\neg Q \Rightarrow \neg P.$

Ex: "If it is raining, then the ground is net."

Converse: "If the ground is net, then it is raining."

Contrapositive: "If the ground is dry, then it is not raining."

We saw in the Warm-Up that $P \Rightarrow Q$ is not logically equivalent to the converse $Q \Rightarrow P$.

Proof: We have

$$\neg Q \Rightarrow \neg P = \neg (\neg Q) \lor \neg P$$

$$= Q \lor \neg P$$

$$= \neg P \lor Q$$

$$= P \Rightarrow Q.$$

<u>P</u>	Q	P⇒Q	7 P	ΓQ	7Q => 7P
T	T	T	F	Ŧ	au
T	F	F	F	7	F
F	Τ	Τ	T	F	T
F	F	T	Т	$\mid \; au \mid$	T

A final logical connective:

(5) Biconditional: (=) means "if and only if"

P => Q :s true exactly when P and Q have the same truth value.

P	Q	P 👄 Q
T	T	T
T	F	F
F	T	F
F	F	T

Thm: $P \Leftrightarrow Q$ is logically equivalent to $(P \Rightarrow Q) \land (Q \Rightarrow P)$.

Proof:

P	Q	P ⇔ Q	$P \Rightarrow Q$	Q ⇒P	(P⇒Q) ∧(Q⇒P)
7	7	7	+	7	7
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	Τ	T
·	'	•	•	•	2

A sentence of the form P => Q is called a biconditional sentence.

Ways to say P => Q:

"P if and only if Q"
"P is necessary and sufficient for Q"
"Q is necessary and sufficient for P"

"P is necessary for Q" is $Q \Rightarrow P$ "P is sufficient for Q" is $P \Rightarrow Q$

 $Ex: x^2 = 9 \iff x = 3 \text{ or } x = -3$

This sentence is true. Why?

Let P be "x² = 9" and Q be
"x=3 or x=-3."

We'll show $P \Rightarrow Q$ and $Q \Rightarrow P$ are both true.

$$\begin{array}{c|cccc}
P & Q & P \Rightarrow Q \\
\hline
T & T & T \\
T & F & F \\
F & T & T \\
F & F & T
\end{array}$$

Case 1: P is true. Then
$$x^2 = 9$$
, so $x^2 - 9 = 0$.

Factor to get
$$(x-3)(x+3)=0$$
.
Hence, $x-3=0$ or $x+3=0$.
That is, $x=3$ or $x=-3$, so
 Q is true.

$$Q \Rightarrow P$$

$$x^2 = 3^2 = 9$$
 or $x^2 = (-3)^2 = 9$.

Conditional Proof

In general, to show $P \Rightarrow Q$ is true, we must

- 1) Assume P is true. 2) Under this assumption, show that Q must be true also.

Why is this valid?

When P is false, P => Q is automatically true.

This method is called conditional proof.

Most of our theorems will be of the form $P \Rightarrow Q$, so we will write a lot of conditional proofs.

To prove a biconditional $P \Leftrightarrow Q$, we need two conditional proofs: for $P \Rightarrow Q$ and $Q \Rightarrow P$.