Tantologies
A sentence is called a tantology if
it is always true for structural
reasons (i.e. because of how it is
constructed using
$$\neg$$
, \land , \lor , \Rightarrow , and \Leftrightarrow).

Ex: "Modus ponens"

$$(P \Rightarrow Q) \land P \Rightarrow Q$$

is a tautology.
Proof: Assume $(P \Rightarrow Q) \land P$ is true.
[Again, if it's false there's nothing to do.]
Then both of $P \Rightarrow Q$ and P
are true, so Q must be true.

Ex: Show that the sentence

$$\left[(P \Rightarrow Q) \land (Q \Rightarrow R) \right] \Rightarrow (P \Rightarrow R)$$
is a tautology. "Hypothetical syllogism"

Proof: Suppose
$$(P \Rightarrow Q) \land (Q \Rightarrow R)$$
 is
true. Thus, $P \Rightarrow Q$ and $Q \Rightarrow R$
are both true.
We want to argue that $P \Rightarrow R$
must be true.
Assume P is true. If not, $P \Rightarrow Q$ is true vacuously
Since $P \Rightarrow Q$ and P are both
true, Q must be true.
Since $Q \Rightarrow R$ and Q are both
true, R must be true.
Therefore, $P \Rightarrow R$ is true, as
desired.

Revisiting the Warm-Up: Recall: The truth value of the sentence "If xy>O, then x>O and y>O" depends on the numerical values of x and y. We said it is false because it can be false (e.g. x=-1, y=-1), but it can also be true (e.g. x=1, y=1 or x=-1, y=1). Quantifiers let us discuss such situations.

Quantifiers

The <u>universal quantifier</u> is V, which means "for all."

If P(x) is a sentence involving the variable x, then $(\forall x) P(x)$ is the sentence "for all x, P(x)" also read as "for every x, P(x)" "for each x, P(x)"

The <u>existential quantifier</u> is I, which means "there exists." (Ix) P(x) is the sentence "there exists x such that P(x)" also read as "for some x, P(x)" "for at least one x, P(x)." <u>Note</u>: A quantifier (\forall, \exists) is always "attached" to a variable, called the bound variable. • A quantifier is always followed by a sentence involving the bound variable.