Warm-Up: Let x and y be real numbers.
Let S be the conditional sentence
"If $x y>0$, then $x>0$ and $y>0$."

- Is S true or false?
- Write the converse and contrapositive of S. Are these sentences true or false?
- Write the negation $I S$ as an "and" sentence.

Another perspective on conditional proof:
To prove $A \Rightarrow C$ is true, it is enough to show that it is impossible for A to be true and C to be simultaneously false.
To do this, either

- Assume A is true and show C must OR also be true.
- Assume C is false and show A must also be false. [ie. prove $\neg C \Rightarrow \neg A$]

Tautologies
A sentence is called a tantology, if it is always true for structural reasons (i.e. because of how it is constructed using $\neg, \wedge, v, \Rightarrow$, and \Leftrightarrow).

Ex: "Modus ponens"

$$
(P \Rightarrow Q) \wedge P \Rightarrow Q
$$

is a tautology.
Proof: Assume $(P \Rightarrow Q) \wedge P$ is true.
[Again, if it's false there's nothing to do.] Then both of $P \Rightarrow Q$ and P are true, so Q must be true.

Modus pones is a common step in logical reasoning.
Ex: If it is raining, then the ground is net. It is raining. Therefore, the ground is net.

Ex: $P \vee \neg P$ is a tantology.
"The law of the excluded middle."

Ex: Show that the sentence

$$
[(P \Rightarrow Q) \wedge(Q \Rightarrow R)] \Rightarrow(P \Rightarrow R)
$$

is a tautology. "Hypothetical syllogism"

Proof: Suppose $(P \Rightarrow Q) \wedge(Q \Rightarrow R)$ is true. Thus, $P \Rightarrow Q$ and $Q \Rightarrow R$ are both true.

We want to argue that $P \Rightarrow R$ must be true.

Assume P is true. $\left[\begin{array}{ll}\text { If } & \text { not, } P \Rightarrow Q \\ \text { and } & \text { we are done. }\end{array}\right.$
Since $P \Rightarrow Q$ and P are both true, Q must be true.

Since $Q \Rightarrow R$ and Q are both true, R must be true.

Therefore, $P \Rightarrow R$ is true, as desired.

Revisiting the Warm-up:

Recall: The truth value of the sentence "If $x y>0$, then $x>0$ and $y>0$ " depends on the numerical values of x and y.
We said it is false because it can be false (e.g. $x=-1, y=-1$), but it can also be true (e.g. $x=1, y=1$ or $x=-1, y=1$).
Quantifiers let us discuss such situations.

Quantifiers
The universal quantifier is \forall, which means "for all."

If $P(x)$ is a sentence involving the variable x, then $(\forall x) P(x)$ is the sentence
"for all $x, \quad P(x)$ "
also read as
"for every $x, P(x)$ "
"for each $x, P(x)$ "
"for any $x, P(x)$."

The existential quantifier is \exists, which means "there exists."
$(\exists x) P(x)$ is the sentence
"there exists x such that $P(x)$ " also read as
"for some $x, P(x)$ "
"for at least one $x, P(x)$."

Note:- A quantifier (\forall, \exists) is always "attached" to a variable, catted the bound variable.

- A quantifier is always followed by a sentence involving the bound variable.

