Ex: Let
$$P(x)$$
 be the sentence
" $(x > 1) \Rightarrow (x^2 > 1)$ "
and let $Q(x)$ be the converse
" $(x^2 > 1) \Rightarrow (x > 1)$."
Then $(\forall x) P(x)$ is true.
 $(\forall x) P(x)$ is true.
 $(\forall x) Q(x)$ is fulse.
 $(\forall x) Q(x)$ is true.
Note: We should be more careful to
specify which values the bound
variable is allowed to take on.
The above statements are correct
when x can be any real number.
To indicate this, we will write
 $(\forall x \in \mathbb{R})$ and $(\exists x \in \mathbb{R})$.

When we use a quantifier
$$(\forall a = 3)$$
,
a bound variable is vanging over a
universe of possibilities.
Usually, we should be explicit about this.
Common choices:
 $Z = 4he$ set of integers
 $Q = 4he$ set of real numbers
 $R = 4he$ set of real numbers
 $C = 4he$ set of complex numbers
 $C = 4he$ set of complex numbers
 $C = 4he$ set of $Complex$ numbers
 $C = 4he$ set $C = 1000$ models
 $C = 10000$ models
 $C = 10000$ models
 $C = 10000$ models
 $C = 10$

Ex: Which statements are true?
(1)
$$(\exists x \in \mathbb{R})(x + 4 = 9)$$

True: $x = 5$.
(2) $(\forall x \in \mathbb{R})(x + 4 = 9)$
False: Try $x = 0$.
(3) $(\exists x \in \mathbb{R})[(x + 4 = 9) \land (x \neq 5)]$
False: $x + 4 = 9 \Rightarrow x = 9 - 4 = 5$
(4) $(\exists x \in \mathbb{R})(x^2 + 6x + 8 \neq 0)$
True: Try $x = 0$.
(5) $(\forall x \in \mathbb{R})(x^2 + 6x + 8 \neq 0)$

Can guess and check, or complete the square: $x^{2} + 6x + 8 = x^{2} + 6x + 9 - 1$ $= (x + 3)^{2} - 1$. False: Try x = -3.

6
$$(\forall x \in \mathbb{R})(x^2 + 6x + 10 \ge 0)$$

True: $x^2 + 6x + 10 = (x + 3)^2 + 1 \ge 1 > 0$
for all real numbers x.

Note: Over a finite set (universe), • V is an "and" statement • J is an "or" statement

$$E_{x}: If A = \{-3, 1, 4\}, \text{ then}$$

$$(\forall x \in A)(x^{2} < 20) = ((-3)^{2} < 20) \land (1^{2} < 20) \land (4^{2} < 20)$$

$$(\exists x \in A)(x > 0) = (-3 > 0) \lor (1 > 0) \lor (4 > 0)$$

$$(Both true)$$