Warm-up: What is the difference between
(a)
$$(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x \in y)$$

(b) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x \in y)$?
Is either frue?

Unique Existence The unique existential quantifier is 3!: (3! x eA) P(x) means "There exists a unique (i.e. one and only one) x & A such that P(x)." Note: 3! is "generalized exclusive or" $(i) \quad (\exists! x \in \mathbb{R})(x^2 = 0)$ Ex: True: $x^2 = 0 \iff x = 0$. (2) $(\exists ! x \in \mathbb{R})(x^2 = 2)$ False: x = JZ and x = -JZ each satisfy $x^2 = 2$. Uniqueness fuils. (3) $(\exists ! x \in \mathbb{R})(x^2 = -2)$ False: x²=-Z has no solutions in R. Existence fails.

Observation: I! can be written in terms
of V and I:
$$(J! x \in A) P(x) = (J x \in A) [P(x) \land (\forall y \in A) (P(y) = i(x = y))]$$

Any other solution is
the one we already
have (x).

Induction
Let
$$N = \{1, 2, 3, ...\}$$
 be the set of
natural numbers.
Ex: You might have seen the following
formula in Calc II:
For each $n \in \mathbb{N}$,
 $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$
 $= \sum_{i=1}^{n} i$
How can we prove $(\forall n \in \mathbb{N})(\frac{2}{i=1} = \frac{n(n+1)}{2})?$
We need an argument that works for
eveny $n - but$ as n gets larger
we get more and more summands.
 $n = 1: 1 = \frac{1/2}{2}$
 $n = 2: 1 + 2 = 3 = \frac{2/3}{2}$
 $n = 3: 1 + 2 + 3 = 6 = \frac{3/4}{2}$
etc.

The Principle of Mathematical Induction Let P(n) be a sentence involving $n \in \mathbb{N}$. Ex: $P(n) = \frac{2}{11}i = \frac{n(n+1)}{2}$

In symbols: $\left\{ P(1) \land \left[(\forall n \in IN) (P(n) \Rightarrow P(n+1)) \right] \right\} \Rightarrow (\forall n \in IN) P(n)$