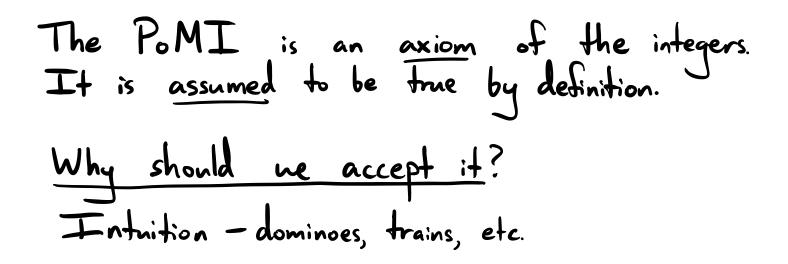
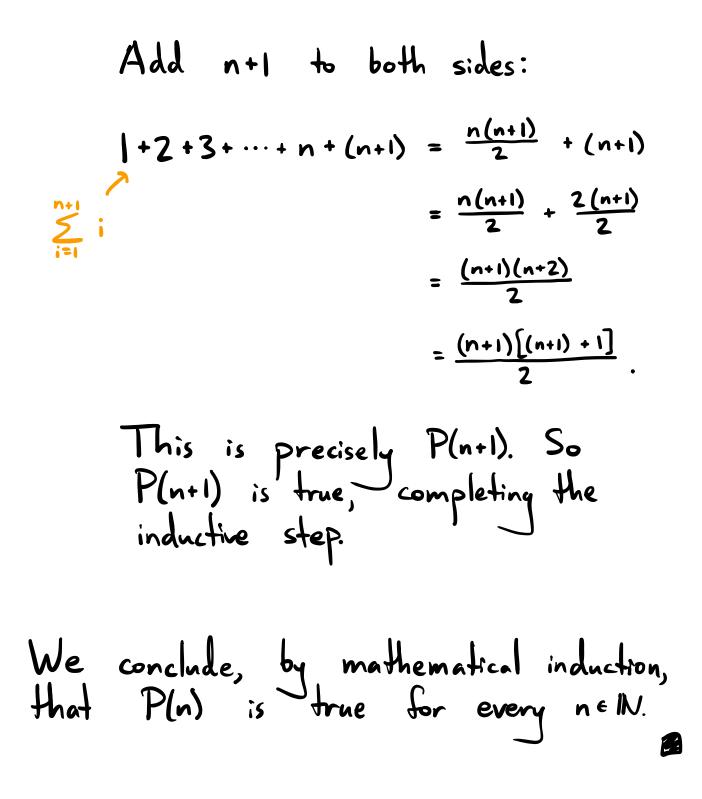
Warm-Up: Let
$$P(x)$$
 be a sentence
depending on $x \in A$. Prove that
 $(\forall x \in A) P(x) \implies (\exists x \in A) P(x)$
is a trantology.

The Principle of Mathematical Induction
Let
$$P(n)$$
 be a sentence involving $n \in \mathbb{N}$.
Ex: $P(n) = \frac{2}{12}i = \frac{n(n+1)}{2}$

In symbols: $\left\{ P(1) \land \left[(\forall n \in IN) (P(n) \Rightarrow P(n+1)) \right] \right\} \Rightarrow (\forall n \in IN) P(n)$



Thm: For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$ Proof: Let P(n) be $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. We will prove (VnEN)P(n) by induction on n. Base Case: When n=1, $\sum_{i=1}^{n} i = 1$ and $\frac{1(1+1)}{2} = 1$, so $P(1) = "\sum_{i=1}^{l} i = \frac{I(1+i)}{2}$ " is true. Inductive Step: Let n∈IN. We will prove P(n) ⇒ P(n+1) is true. Suppose P(n) is true. That is, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ for this particular number n. $\int_{0}^{\infty} 1+2+3+\cdots+n = \frac{n(n+1)}{2}$.



Then: For every
$$n \in IN$$
,
 $1+3+5+\cdots+(2n-1) = n^2$.
 $= \sum_{i=1}^{n} (2i-1)$
Proof: We proceed by induction on n .
Let $P(n)$ be " $1+3+5+\cdots+(2n-1) = n^2$."
Base Case: When $n=1$, $P(1)$ is
" $1 = 1^2$ "
which is true.
Inductive Step: Let $n \in IN$. We
wish to prove $P(n) \Rightarrow P(n+1)$,

So we may assume P(n). Thus, $1+3+5+\cdots+(2n-1)=n^2$

is true (for this n).

Now,

$$1+3+5+\cdots+(2n-1)+[2(n+1)-1]$$

 $= n^{2}+[2n+2-1]$
 $= n^{2}+2n+1$
 $=(n+1)^{2}$.
Thus, we have shown that
 $P(n+1)$ is true, completing the
inductive step.
By induction, we conclude that
 $P(n)$ is true for all $n \in M$.
Does the base case have to be $n=1$?
 $No!$

Ex (Exam I Review 8(e)): For every
$$n \in IN$$

such that $n > 3$, $2^n < n!$

$$\frac{Check}{2^3} = 8 > 6 = 3! \times 2^n < 16 < 24 = 4! < 2^5 = 32 < 120 = 5! < 2^n < 12^n < 1$$

Since
$$2 \le 3 \le n \le n+1$$
, we have
 $2^{n+1} \le 2n! \le (n+1)n! = (n+1)!$
Thus, $P(n+1)$ is true, completing
the inductive step.
We conclude that $P(n)$ is true
for every $n \le N$ such that $n \ge 3$.
Note: We could have equivalently set
 $Q(n) = P(n+3) = "2^{n+3} \le (n+3)!"$
and proved $(\forall n \le N) Q(n)$ by
induction starting at $n=1$.