3 Definitiong

- Sunjective (onto)
- injective (one-to-one)
- bijective (both - invertible)

Surjection
Def: Let $f: A \rightarrow B$ be a function. We say f is a surjection if soall $y \in B$, the exist $x \in A$ such that $f(x)=y$.
$A k_{0}$ say f is surjective, f is onto.
Equivalently, $f: A \rightarrow B$ is surjective

$$
\begin{aligned}
\Longleftrightarrow & R_{n_{y}}(f)=B \\
& \left\{\left.y^{\prime} B\right|_{y}=f(x) \in \text { for sue } x<A\right\}
\end{aligned}
$$

Injections
Def: A function $f: A \rightarrow B$ is an injection if for all $x_{1}, x_{2} \in A$,
if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$
Also, say f is mijective or f is one-to-one.
\rightarrow Equivalently, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Bijection
Def: A function $f: A \rightarrow B$ is a bijection (do say "f: brectine") if it is both. surjection and an injection.

Examples
Ex: $\left.\begin{array}{rl}\boldsymbol{f}: \mathbb{R} & \rightarrow \mathbb{R} \\ \boldsymbol{x} & \mapsto \boldsymbol{x}^{\mathbf{3}}\end{array}\right] \rightarrow$ short for $f(x)=x^{3}$.

- f is a surjection

$$
\begin{gathered}
\cdot R_{n g}(f)=\mathbb{R} \\
s=r \\
z
\end{gathered}
$$

Prat: Let $y \in \mathbb{R}$.
Set $x=\sqrt[3]{y} \in \mathbb{R}$. Then $f(x)=f(\sqrt[3]{y})$

$$
=(\sqrt[3]{y})^{3}=y
$$

So $y \in R_{n g}(f)$, showing f is subjective.

- f is infective. $\quad f(x)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$

Poof: Let $x_{1}, x_{2} \in \mathbb{R}$ and suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. That \& $x_{1}{ }^{3}=x_{2}^{3}$. Then $\sqrt[3]{x_{1}^{3}}=\sqrt[3]{x_{2}^{3}}$

$$
x_{1}=x_{2} .
$$

Picture:

-If surjective
\leftrightarrow ery $y \in \mathbb{R}$ is in the mage, i.e. $y=f(x)$ for save x
\Leftrightarrow ery havizantal lie intureeds gmph.

- f injective

$$
\leftrightarrow \underbrace{f\left(x_{1}\right)=f\left(x_{2}\right)}_{=y} \Rightarrow x_{1}=x_{2}
$$

\Leftrightarrow ecch hovirontal the intarects the guaph at most ance

So $\quad \begin{aligned} \quad f: R & \rightarrow \pi R \\ x & \rightarrow x^{3}\end{aligned}$ is a biection.

Ex:

$$
\begin{aligned}
& g: \mathbb{R} \rightarrow \mathbb{R} \\
& x \mapsto x^{2}
\end{aligned}
$$

- gas not surjective

Proof: Let $y=-1 \in \mathbb{R}$.

$$
R_{n g}(g) \nsubseteq \mathbb{R}
$$

ie. some $y \in \mathbb{R}$ is nut in the rage.

Then for all $x \in \mathbb{R}$,

$$
g(x)=x^{2} \neq-1 \text {. So }-1 \notin R_{n g}(g) \text {. }
$$

Graph:

- g is not infective $\left.\neg\left(V_{x_{k}(x)}\right) f\left(x_{1}\right)_{T}=f\left(m_{2}\right) \Rightarrow x_{1}=x_{2}\right)$

$$
\equiv\left(\exists_{x_{1}, x_{2}}+\mathbb{R}\right)\left(f\left(x_{2}\right)+\left(a_{2}\right) \text { b+ }+x_{1} \neq x_{2}\right)
$$

Prof: Consider $1,-1 \in \mathbb{R}$.

$$
g(1)=1^{2}=1=(-1)^{2}=g(-1) \text {, but } 1+-1 \text {. }
$$

So g : not injector.

How can we mate g surjectire?
Ensy fix: Change codoman to be range.

$$
\begin{aligned}
& \begin{aligned}
g: \mathbb{R} & \rightarrow[0, \infty) \\
x & \rightarrow x^{2}
\end{aligned} \\
& \text { Pery } y \in[0, \infty) \\
& \text { comespats to a horiz. } \\
& \text { line intareects guph }
\end{aligned}
$$

still not injectice.
To make it ingectere, restrict doman

$$
\begin{aligned}
h:[0, \infty) & \rightarrow[0, \infty) \\
x & \rightarrow x^{2}
\end{aligned}
$$

Summary $f: A \rightarrow B$

- f surjective $\Longleftrightarrow(\forall y \in B)(\exists x \in A)(f(x)=y)$
f not sunjective $\Leftrightarrow(\exists y \in B)(\forall x \in A)(f(x) \neq y)$
- f infective $\Leftrightarrow\left(\forall x_{1}, x_{2} \in A\right)\left[f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right]$

$$
\begin{aligned}
& \Leftrightarrow\left(\forall x_{1}, x_{2} \in A\right)\left[x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right] \\
f \text { nut injeche } & \leftrightarrow\left(\exists x_{1}, x_{2} \subset A\right)\left[x_{1} \neq x_{2} \text { and } f\left(x_{1}\right) \neq f\left(x_{2}\right)\right] .
\end{aligned}
$$

Together,
Lemma: Let $f: A \rightarrow B$ be a function. Then f is a bijection if and only if
for every $y \in B$, there exists a unique $x d A$ such that $f(x)=y$.
ie. $\quad f$ is a bijection $\Leftrightarrow(\forall y \in B)(\exists!x \in A)(f(x)=y)$

- existence is surjecthity.
- uniqueness is iajectrity

