Homework 15

Math 3345 - Spring 2022 - Kutler
Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. (a) Use the Euclidean algorithm to compute $\operatorname{gcd}(350,168)$.
(b) Find integers x_{1} and y_{1} such that $350 x_{1}+168 y_{1}=14$.
(c) Find integers x_{2} and y_{2} such that $350 x_{2}+168 y_{2}=28$.
(d) Prove that there do not exist integers x and y such that $350 x+168 y=15$.
2. [Falkner Section 4 Exercise 25] Let $m \in \mathbb{N}$. Show that
(a) For all $a \in \mathbb{Z}$, we have $a \equiv a \bmod m$. [Reflexivity]
(b) For all $a, b \in \mathbb{Z}$, if $a \equiv b \bmod m$, then $b \equiv a \bmod m$. [Symmetry]
(c) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \bmod m$ and $b \equiv c \bmod m$, then $a \equiv c \bmod m$. [Transitivity]
3. [Falkner Section 4 Exercise 26 - modified] Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$. Suppose that $a \equiv b \bmod m$ and $c \equiv d \bmod m$.
(a) Prove that $a+c \equiv b+d \bmod m$.
(b) Prove that $a-c \equiv b-d \bmod m$.
(c) Prove that $a c \equiv b d \bmod m$. [HiNT: Since $a \equiv b \bmod m, m$ divides $b-a$, so $b-a=m k$ for some integer k. Rewrite this as $b=a+m k$. Similarly, $d=c+m \ell$ for some integer ℓ.]

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. Without using a calculator, find the natural number k such that $0 \leq k \leq 14$ and k satisfies the given congruence.
(a) $2^{75} \equiv k(\bmod 15)$
(b) $6^{41} \equiv k(\bmod 15)$
(c) $140^{874} \equiv k(\bmod 15)$
