Homework 15 Math 3345 – Spring 2022 – Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

- 1. (a) Use the Euclidean algorithm to compute gcd(350, 168).
 - (b) Find integers x_1 and y_1 such that $350x_1 + 168y_1 = 14$.
 - (c) Find integers x_2 and y_2 such that $350x_2 + 168y_2 = 28$.
 - (d) Prove that there do not exist integers x and y such that 350x + 168y = 15.
- 2. [Falkner Section 4 Exercise 25] Let $m \in \mathbb{N}$. Show that
 - (a) For all $a \in \mathbb{Z}$, we have $a \equiv a \mod m$. [Reflexivity]
 - (b) For all $a, b \in \mathbb{Z}$, if $a \equiv b \mod m$, then $b \equiv a \mod m$. [Symmetry]
 - (c) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$. [Transitivity]
- 3. [Falkner Section 4 Exercise 26 modified] Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$. Suppose that $a \equiv b \mod m$ and $c \equiv d \mod m$.
 - (a) Prove that $a + c \equiv b + d \mod m$.
 - (b) Prove that $a c \equiv b d \mod m$.
 - (c) Prove that $ac \equiv bd \mod m$. [HINT: Since $a \equiv b \mod m$, m divides b a, so b a = mk for some integer k. Rewrite this as b = a + mk. Similarly, $d = c + m\ell$ for some integer ℓ .]

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

- 1. Without using a calculator, find the natural number k such that $0 \le k \le 14$ and k satisfies the given congruence.
 - (a) $2^{75} \equiv k \pmod{15}$
 - (b) $6^{41} \equiv k \pmod{15}$
 - (c) $140^{874} \equiv k \pmod{15}$