Homework 16
Math 3345 - Spring 2022 - Kutler
Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. Let $a, b, c \in \mathbb{Z}$. Prove that if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
2. Let $a, b \in \mathbb{Z}$ and set $d=\operatorname{gcd}(a, b)$.
(a) Explain why $\frac{a}{d}$ and $\frac{b}{d}$ are integers.
(b) Prove that $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
3. [Falkner Section 4 Exercise 20 (The rational roots theorem)] Let $r \in \mathbb{Q}$ be a rational number such that

$$
c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots+c_{1} r+c_{0}=0
$$

where $n \in \mathbb{N}$ and $c_{0}, c_{1}, \ldots, c_{n}, c_{n-1} \in \mathbb{Z}$, and $c_{n} \neq 0$. In other words, $r$ is a rational root of the polynomial $f(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$, and every coefficient of this polynomial is an integer.
Prove that $r$ can be written in the form $r=\frac{a}{b}$. where $a$ is an integer such that $a \mid c_{0}$ and $b$ is a nonzero integer such that $b \mid c_{n}$.
[HINT: Write $r=\frac{a}{b}$ as a fraction in lowest terms. Then $\operatorname{gcd}(a, b)=1$. (Why?) What does this say about the prime factorizations of $a$ and $b$ ?]

## Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 4 Exercise 21] Let $f(x)=3 x^{3}-40 x^{2}+97 x+10$.
(a) Find a rational number $r \in \mathbb{Q}$ such that $f(r)=0$. [HINT: Use the rational roots theorem to narrow down the possibilities for $r$.]
(b) Find two other real numbers $s$ and $t$ such that $f(s)=0$ and $f(t)=0$. [HINT: Use part (a) and polynomial long division to write $f(x)=(x-r) g(x)$, where $g(x)$ is a quadratic polynomial.]
(c) Explain why $s$ and $t$ must be irrational. [Hint: There are several ways to do this. One elegant way is to notice that $g(x)=3 h(x)$, where $h(x)$ is a quadratic polynomial to which it is particularly easy to apply the rational roots theorem.]
