Exam 1 Practice Problems

1. Show that $(P \wedge Q) \vee R$ is logically equivalent to $(P \vee R) \wedge(Q \vee R)$ in two ways
(a) By using a truth table;
(b) By giving an explanation in words.
2. Below, you are asked to determine if two sentences are logically equivalent. If the answer is yes, provide a proof (either in words or by using a truth table). If the answer is no, demonstrate this by choosing appropriate truth values for P, Q, R, and provide a brief justification.
(a) Is $P \Rightarrow(Q \Rightarrow R)$ logically equivalent to $(P \Rightarrow Q) \Rightarrow R$?
(b) Is $P \Rightarrow(Q \Rightarrow R)$ logically equivalent to $Q \Rightarrow(P \Rightarrow R)$?
(c) Is $(P \wedge Q) \Rightarrow R$ logically equivalent to $(P \Rightarrow R) \vee(Q \Rightarrow R)$?
(d) Is $(P \vee Q) \Rightarrow R$ logically equivalent to $(P \Rightarrow R) \wedge(Q \Rightarrow R)$?
(e) Is $\neg[(P \Rightarrow Q) \wedge P]$ logically equivalent to $(Q \Rightarrow P) \vee \neg P$?
3. For each sentence below, determine if the sentence is always true (i.e., it is a tautology) or if it is possibly false. If it is always true, provide a proof (either in words or by using a truth table). If it is possibly false, give truth values for P, Q, R making the sentence false, and provide a brief justification.
(a) $P \wedge \neg P$
(b) $P \vee \neg P$
(c) $(P \wedge Q) \Rightarrow(P \vee Q)$
(d) $(P \vee Q) \Rightarrow(P \wedge Q)$
(e) $P \Rightarrow(Q \Rightarrow P)$
(f) $(P \Rightarrow Q) \Rightarrow P$
(g) $[(P \Rightarrow Q) \wedge \neg Q] \Rightarrow \neg P$
(h) $[(P \Rightarrow Q) \wedge(Q \Rightarrow R)] \Rightarrow(P \Rightarrow R)$
4. In class, we saw that $[(P \Rightarrow Q) \wedge P] \Rightarrow Q$ is a tautology, called modus ponens.
(a) Show that $(P \Rightarrow Q) \wedge P$ is logically equivalent to $P \wedge Q$.
(b) Show that the converse of modus ponens is not a tautology. That is, find truth values for P and Q so that the sentence $Q \Rightarrow[(P \Rightarrow Q) \wedge P]$ is false.
5. Show that each of the following conditional sentences is a tautology by writing a conditional proof.
(a) $P \Rightarrow(P \vee Q)$
(b) $[P \Rightarrow(Q \wedge \neg Q)] \Rightarrow \neg P$
(c) $[(P \Rightarrow \neg Q) \wedge(R \Rightarrow Q)] \Rightarrow(P \Rightarrow \neg R)$
(d) $\{[(P \Rightarrow Q) \wedge(R \Rightarrow S)] \wedge(\neg Q \vee \neg S)\} \Rightarrow(\neg P \vee \neg R)$
6. Below, you are asked to determine if two sentences are logically equivalent. If the answer is yes, provide a proof (either in words or by using a truth table). If the answer is no, demonstrate this by giving a set A and sentences $P(x)$ and $Q(x)$ making it false, and provide a brief justification.
(a) Is

$$
(\exists x \in A)(P(x) \wedge Q(x))
$$

logically equivalent to

$$
((\exists x \in A) P(x)) \wedge((\exists x \in A) Q(x)) ?
$$

(b) Is

$$
(\forall x \in A)(P(x) \wedge Q(x))
$$

logically equivalent to

$$
((\forall x \in A) P(x)) \wedge((\forall x \in A) Q(x)) ?
$$

(c) Is

$$
(\exists x \in A)(P(x) \Rightarrow Q(x))
$$

logically equivalent to

$$
((\exists x \in A) P(x)) \Rightarrow((\exists x \in A) Q(x)) ?
$$

7. For each of the following sentences, write out what it means in words, state whether it is true or false, and prove your statement.
(a) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x y=0)$
(b) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x y=0)$
(c) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x y=20)$
(d) $(\forall x \in \mathbb{R})[(x \neq 0) \Rightarrow(\exists y \in \mathbb{R})(x y=20)]$
(e) $(\forall x \in \mathbb{R})[(x \neq 0) \Rightarrow(\exists!y \in \mathbb{R})(x y=20)]$
(f) $(\forall m \in \mathbb{Z})[(m \neq 0) \Rightarrow(\exists!n \in \mathbb{Z})(m n=20)]$
(g) $(\forall m \in \mathbb{Z})(\exists n \in \mathbb{Z})(m<n)$
(h) $(\exists n \in \mathbb{Z})(\forall m \in \mathbb{Z})(m<n)$
8. Prove the following statements using mathematical induction. Be sure to clearly state the inductive hypothesis, and explain what you are proving in the inductive step.
(a) For every $n \in \mathbb{N}$,

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

(b) For every $n \in \mathbb{N}$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(c) For every $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

(d) For every $n \in \mathbb{N}$,

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

(e) For every $n \in \mathbb{N}$ such that $n>3, n$! $>2^{n}$.
(f) For every $n \in \mathbb{N}$ such that $n>6, n$! $>3^{n}$.

