
REAL AND RATIONAL NUMBERS

1. Axioms for the Real Numbers

The set of real nubers, denoted R, has the following properties:

1. (Operations) There are binary operations + (addition) and · (multiplication), which take
pairs of elements of R to elements of R,

2. (Commutativity) For all a, b ∈ R,

a + b = b + a and a · b = b · a.
3. (Associativity) For all a, b, c ∈ R,

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c.
4. (Distributive Law) For all a, b, c ∈ R,

a · (b + c) = a · b + a · c.
5. (Identity) There are elements 0, 1 ∈ R such that for all a ∈ R,

a + 0 = a and a · 1 = a.

Moreover, 0 6= 1.

6. (Additive Inverses) For each a ∈ R, there exists −a ∈ R such that

a + (−a) = 0.

We write b− a to mean b + (−a).

7. (Multiplicative Inverses) For each a ∈ R such that a 6= 0, there exists a−1 ∈ R such that

a · a−1 = 1.

We write b
a to mean b · a−1.

8. (Positive Integers) There is a subset R>0 of R which we call the positive real numbers.
We write a < b when b− a ∈ R>0.

9. (Positive Closure) For all a, b ∈ R>0,

a + b ∈ R>0 and a · b ∈ R>0.

10. (Trichotomy) For every a ∈ R, exactly one of the the following is true:
(i) a ∈ R>0, or

(ii) a = 0, or
(iii) −a ∈ R>0.

11. (Least Upper Bound Property) Every non-empty subset of R which has an upper bound
has a least upper bound in R.

These properties are axioms, meaning that we declare them to be true without proof.
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2. Basic consequences of the axioms

Notice that many of the axioms for R also appeared in the list of axioms for the integers Z. As
a result, many of the basic facts we proved about Z are also true for R. We collect these below.

Lemma 1. For all a, b, c ∈ R, we have the following:

(a) (Additive Cancellation Property) If a + b = a + c, then b = c.
(b) (Uniqueness of Additive Inverses) If a + b = 0, then b = −a.
(c) a · 0 = 0.
(d) If a · b = 0, then a = 0 or b = 0.
(e) −(−a) = a.
(f) −a = (−1) · a.
(g) (Multiplicative Cancellation Property) If a 6= 0 and a · b = a · c, then b = c.
(h) The multiplicative identity 1 is an element of R>0.
(i) Exactly one of the following is true:

(i) a < b, or
(ii) a = b, or
(iii) b < a.

(j) If a < b, then a + c < b + c.
(k) If a < b and 0 < c, then a · c < b · c.

Proof. The proofs of these statements are identical to the proofs of the analogous statements for
Z. See the Integers handout for details. �

The Multiplicative Inverses axiom guarantees that each non-zero real number has a multiplicative
inverse. This is significantly different from the integers, where only 1 and −1 have multiplicative
inverses. In the next lemma, we record some basic properties of multiplicative inverses.

Lemma 2. For all a, b ∈ R such that a 6= 0 and b 6= 0, we have the following:

(a) (Uniqueness of Multiplicative Inverses) If a · b = 1, then b = a−1.
(b) (a−1)−1 = a
(c) (a · b)−1 = a−1 · b−1

(d) (−a)−1 = −a−1

(e) a > 0 if and only if a−1 > 0.

Proof. Let a, b ∈ R with a 6= 0 and b 6= 0.

(a) Suppose a · b = 1. We also know that a · a−1 = 1, so a · b = a · a−1. By the Multiplicative
Cancellation Property (Lemma 1(g)), we conclude that b = a−1.

(b) By the Multiplicative Inverses axiom (and Commutativity), a−1 ·a = 1. Thus, by Uniqueness
of Mutliplicative Inverses, we have a = (a−1)−1.

(c) By the Multiplicative Inverses, Commutativity, and Associativity axioms, we have

(a · b) · (a−1 · b−1) = (a · a−1) · (b · b−1) = 1 · 1 = 1.

Therefore, by Uniqueness of Multiplicative Inverses, a−1 · b−1 = (a · b)−1.
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(d) Observe that (−1)·(−1) = −(−1) = 1 by Lemma 1 parts (e) and (f). Therefore, (−1)−1 = −1
by Uniqueness of Multiplicative Inverses. Thus,

(−a)−1 =
(
(−1) · a)

)−1
= (−1)−1 · a−1 = −a−1

by part (c).
(e) Suppose a > 0. By the Trichotomy axiom, exactly one of the following possibilities holds

true: a−1 > 0 or a−1 = 0 or −a−1 > 0.
We cannot have a−1 = 0, because this would imply 1 = a · a−1 = a · 0 = 0 by Lemma 1(c),

which contradicts the fact that 1 6= 0 by the Identity axiom.
Assume, for the sake of contradiction, that −a−1 > 0. Then the Positive Closure axiom

implies that

a · (−a−1) = a · (−1) · a−1 = (−1) · (a · a−1) = −1 · 1 = −1

is an element of R>0; that is, −1 > 0. But this contradicts the Trichotomy axiom, because
1 > 0 by Lemma 1(h).

Thus, we have shown that a−1 > 0 if a > 0.
Conversely, if a−1 > 0, then we apply the same argument to get that (a−1)−1 > 0. But

(a−1)−1 = a by part (b), and so a > 0.

�

3. Division and Rational Numbers

Unsurprisingly, the real numbers contain the integers.

Theorem 3. Every integer is in R.

Proof. By the Trichotomy axiom for Z, the integers consist of the natural numbers, 0, and the
additive inverses of the natural numbers.

First, we know that 0 ∈ R by the Identity axiom.

Next, we show that the natural numbers N are contained in R. We proceed by induction. As
the base case, 1 ∈ R by the Identity axiom. Now, let n ∈ N be a natural number and suppose that
n ∈ R. Then n + 1 ∈ R because the sum of two real numbers is a real number. This completes the
inductive proof, showing that every natural number is in R.

Finally, for each natural number n ∈ N, since n is in R, the additive inverse −n is a real number
by the Additive Inverses axiom for R. �

By thinking of the integers as living inside the real numbers, we may now divide integers to get
“fractions,” or rational numbers.

Definition. A real number x ∈ R is a rational number if there exist integers a, b ∈ Z such that
b 6= 0 and x = a · b−1. We write x = a

b , and say that a
b is a fraction representing the rational

number x. The numerator of a
b is a and the denominator of a

b is b. The set of all rational
numbers is denoted Q.

Remark. Every integer n is a rational number, because n = n
1 ∈ Q.
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Remark. A rational number may be represented by (infinitely) many fractions. Specifically, we
have a

b = c
d if and only if a · b−1 = c · d−1 if and only if ad = bc.

Lemma 4. For all x, y ∈ Q, we have the following:

(a) x + y ∈ Q
(b) x− y ∈ Q
(c) x · y ∈ Q
(d) If y 6= 0, then x · y−1 ∈ Q.

Proof. We prove (a) and leave (b)–(d) as exercises.

Since x and y are rational numbers, there exist a, b, c, d ∈ Z such that b 6= 0, d 6= 0, and x = a
b

and y = c
d . Then

x + y =
a

b
+

c

d
= a · b−1 + c · d−1.

Now, clearing denominators, we see that

bd(x + y) = bd(a · b−1 + c · d−1) = ad + bc.

Multiplying by (bd)−1 on both sides yields

x + y = (ad + bc) · (bd)−1.

Notice that ad+ bc and bd are integers, and bd 6= 0 because b 6= 0 and d 6= 0. Thus, we have shown
that x + y = ad+bc

bd is a rational number. �

The next lemma shows that we may always write a rational number as a fraction with a positive
denominator.

Lemma 5. Let x ∈ Q. Then there exists m ∈ Z and n ∈ N such that x = m
n .

Proof. By definition of rational numbers, there exist a, b ∈ Z with b 6= 0 such that x = a
b . If b > 0,

then we may set m = a and n = b and we are done.

Otherwise, b < 0. Then −b > 0. Since x = a
b = −a

−b , we set m = −a and n = −b. �

We now set out to show that each rational number can be written in lowest terms.

Definition. A fraction a
b is in lowest terms if for every d ∈ N, if d|a and d|b, then d = 1.

Example. The fractions 2
3 and 10

15 are representations of the same rational number (because cross-

multiplying gives 2 · 15 = 3 · 10. The representation 2
3 is in lowest terms, while 10

15 is not.

In order to prove that any rational number x can be represented in lowest terms, we will focus
on the denominators that show up in the representations of x as fractions. The representation in
lowest terms will be the fraction with the smallest denominator. The following definition is useful
in making this precise.

Definition. Let x ∈ Q. A possible positive denominator for x is a positive integer n ∈ N such
that there exists m ∈ Z with x = m

n .

Example. The rational number 2
3 may be represented as 4

6 , 6
9 , and 10

15 (among infinitely many
other fractions). So 3, 6, 9, and 15 are some of the possible positive denominators for this rational
number.
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Theorem 6. Let x ∈ Q. There exist m ∈ Z and n ∈ N such that x = m
n and m

n is in lowest terms.

Proof. Let S be the set of all possible positive denominators of x. By Lemma 5, x has at least
one possible positive denominator, and so S is a non-empty subset of N. By the Well-Ordering
Principle, the set S has a least element n. Then there exists m ∈ Z such that x = m

n .

We claim that m
n is in lowest terms. For the sake of contradiction, assume it is not. Then there

is some d ∈ N such that d|m, d|n, and d 6= 1. Thus, there exist integers k and ` such that

m = dk and n = d`.

Therefore,

x =
m

n
=

dk

d`
=

k

`
.

Because n, d ∈ N, we have ` ∈ N as well. Moreover, since d 6= 1, we have d > 1. Hence, ` < n. This
shows that ` is a possible positive denominator for x which is smaller than n, a contradiction.

It follows that m
n is in lowest terms. �

4. Least Upper Bounds

The Least Upper Bound Property is perhaps the most subtle of the axioms for R, but it captures
the fundamental nature of the real numbers. Indeed, the standard picture of the real numbers as
a “continuum” along a number line rests on this axiom. You will learn more about this axiom in
a real analysis course. Here, we will only try to give an idea of what it is and how it is used.

Let S be a subset of the real numbers. A real number a is called an upper bound of S if x ≤ a
for all x ∈ S. A real number a is called a least upper bound of S if a is an upper bound of S
and for all upper bounds b of S, a ≤ b.

Lemma 7. Let S be a subset of R. The least upper bound of S, if it exists, is unique.

Proof. Suppose a and b are both least upper bounds of S. Then, in particular, b is an upper bound
of S, so by the fact that a is a least upper bound we get a ≤ b. Similarly, a is an upper bound of
S, and so the fact that b is a least upper bound implies that b ≤ a. Therefore, a = b. �

The Least Upper Bound Property guarantees that any (non-empty) set of real numbers which
has an upper bound has a least upper bound in R. As the following example illustrates, the least
upper bound of a set may or may not be an element of the set.

Example. Let S = [0, 1] be the set of all real numbers x satisfying 0 ≤ x ≤ 1, and let T = (0, 1)
be the set of all real numbers x satisfying 0 < x < 1. Then a ∈ R is an upper bound for S if and
only if a is an upper bound for T if and only if a ≥ 1. The number 1 is the least upper bound of
both sets. Notice that 1 ∈ S but 1 /∈ T .

The Least Upper Bound Property is particularly useful for showing that certain real numbers
exist. This next example provides a sketch of a proof that

√
2 exists and is a real number.

Example. Let S be the set of all rational numbers x such that x2 ≤ 2. Notice that 1 ∈ S, and so
S is non-empty. We can see also that 2 is an upper bound for S. Indeed, if x > 2, then x2 > 4 > 2,
so x /∈ S. By contrapositive, if x ∈ S then x ≤ 2.
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Therefore, the Least Upper Bound Property implies that S has a least upper bound a ∈ R. One
can show that a2 = 2; that is, a =

√
2. (You do this by contradiction: If a2 < 2, then a cannot be

an upper bound; if a2 > 2, then a will be an upper bound which is not the least upper bound.)

This shows that
√

2 ∈ R. It turns out (as we will soon prove) that there is no rational number
a such that a2 = 2. Thus, this example also shows that Q does not satisfy the Least Upper Bound
Property.


