REAL AND RATIONAL NUMBERS

1. Axioms for the Real Numbers

The set of real nubers, denoted \mathbb{R} , has the following properties:

- 1. (**Operations**) There are binary operations + (addition) and \cdot (multiplication), which take pairs of elements of \mathbb{R} to elements of \mathbb{R} ,
- 2. (Commutativity) For all $a, b \in \mathbb{R}$,

$$a + b = b + a$$
 and $a \cdot b = b \cdot a$.

3. (Associativity) For all $a, b, c \in \mathbb{R}$,

$$a + (b + c) = (a + b) + c$$
 and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

4. (Distributive Law) For all $a, b, c \in \mathbb{R}$,

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

5. (Identity) There are elements $0, 1 \in \mathbb{R}$ such that for all $a \in \mathbb{R}$,

$$a + 0 = a$$
 and $a \cdot 1 = a$.

Moreover, $0 \neq 1$.

6. (Additive Inverses) For each $a \in \mathbb{R}$, there exists $-a \in \mathbb{R}$ such that

$$a + (-a) = 0.$$

We write b - a to mean b + (-a).

7. (Multiplicative Inverses) For each $a \in \mathbb{R}$ such that $a \neq 0$, there exists $a^{-1} \in \mathbb{R}$ such that

$$a \cdot a^{-1} = 1$$

We write $\frac{b}{a}$ to mean $b \cdot a^{-1}$.

- 8. (Positive Integers) There is a subset $\mathbb{R}_{>0}$ of \mathbb{R} which we call the positive real numbers. We write a < b when $b - a \in \mathbb{R}_{>0}$.
- 9. (Positive Closure) For all $a, b \in \mathbb{R}_{>0}$,

 $a+b \in \mathbb{R}_{>0}$ and $a \cdot b \in \mathbb{R}_{>0}$.

10. (Trichotomy) For every $a \in \mathbb{R}$, exactly one of the the following is true:

(i) $a \in \mathbb{R}_{>0}$, or

- (ii) a = 0, or
- (iii) $-a \in \mathbb{R}_{>0}$.
- 11. (Least Upper Bound Property) Every non-empty subset of \mathbb{R} which has an upper bound has a *least upper bound* in \mathbb{R} .

These properties are **axioms**, meaning that we declare them to be true without proof.

2. Basic consequences of the axioms

Notice that many of the axioms for \mathbb{R} also appeared in the list of axioms for the integers \mathbb{Z} . As a result, many of the basic facts we proved about \mathbb{Z} are also true for \mathbb{R} . We collect these below.

Lemma 1. For all $a, b, c \in \mathbb{R}$, we have the following:

- (a) (Additive Cancellation Property) If a + b = a + c, then b = c.
- (b) (Uniqueness of Additive Inverses) If a + b = 0, then b = -a.
- $(c) \ a \cdot 0 = 0.$
- (d) If $a \cdot b = 0$, then a = 0 or b = 0.
- (e) (-a) = a.
- $(f) -a = (-1) \cdot a.$
- (g) (Multiplicative Cancellation Property) If $a \neq 0$ and $a \cdot b = a \cdot c$, then b = c.
- (h) The multiplicative identity 1 is an element of $\mathbb{R}_{>0}$.
- (i) Exactly one of the following is true:
 - (i) a < b, or
 - (ii) a = b, or
 - (iii) b < a.
- (j) If a < b, then a + c < b + c.
- (k) If a < b and 0 < c, then $a \cdot c < b \cdot c$.

Proof. The proofs of these statements are identical to the proofs of the analogous statements for \mathbb{Z} . See the Integers handout for details.

The Multiplicative Inverses axiom guarantees that each non-zero real number has a multiplicative inverse. This is significantly different from the integers, where only 1 and -1 have multiplicative inverses. In the next lemma, we record some basic properties of multiplicative inverses.

Lemma 2. For all $a, b \in \mathbb{R}$ such that $a \neq 0$ and $b \neq 0$, we have the following:

(a) (Uniqueness of Multiplicative Inverses) If $a \cdot b = 1$, then $b = a^{-1}$. (b) $(a^{-1})^{-1} = a$ (c) $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ (d) $(-a)^{-1} = -a^{-1}$ (e) a > 0 if and only if $a^{-1} > 0$.

Proof. Let $a, b \in \mathbb{R}$ with $a \neq 0$ and $b \neq 0$.

- (a) Suppose $a \cdot b = 1$. We also know that $a \cdot a^{-1} = 1$, so $a \cdot b = a \cdot a^{-1}$. By the Multiplicative Cancellation Property (Lemma 1(g)), we conclude that $b = a^{-1}$.
- (b) By the Multiplicative Inverses axiom (and Commutativity), $a^{-1} \cdot a = 1$. Thus, by Uniqueness of Multiplicative Inverses, we have $a = (a^{-1})^{-1}$.
- (c) By the Multiplicative Inverses, Commutativity, and Associativity axioms, we have

$$(a \cdot b) \cdot (a^{-1} \cdot b^{-1}) = (a \cdot a^{-1}) \cdot (b \cdot b^{-1}) = 1 \cdot 1 = 1.$$

Therefore, by Uniqueness of Multiplicative Inverses, $a^{-1} \cdot b^{-1} = (a \cdot b)^{-1}$.

(d) Observe that $(-1) \cdot (-1) = -(-1) = 1$ by Lemma 1 parts (e) and (f). Therefore, $(-1)^{-1} = -1$ by Uniqueness of Multiplicative Inverses. Thus,

$$(-a)^{-1} = ((-1) \cdot a))^{-1} = (-1)^{-1} \cdot a^{-1} = -a^{-1}$$

by part (c).

(e) Suppose a > 0. By the Trichotomy axiom, exactly one of the following possibilities holds true: $a^{-1} > 0$ or $a^{-1} = 0$ or $-a^{-1} > 0$.

We cannot have $a^{-1} = 0$, because this would imply $1 = a \cdot a^{-1} = a \cdot 0 = 0$ by Lemma 1(c), which contradicts the fact that $1 \neq 0$ by the Identity axiom.

Assume, for the sake of contradiction, that $-a^{-1} > 0$. Then the Positive Closure axiom implies that

$$a \cdot (-a^{-1}) = a \cdot (-1) \cdot a^{-1} = (-1) \cdot (a \cdot a^{-1}) = -1 \cdot 1 = -1$$

is an element of $\mathbb{R}_{>0}$; that is, -1 > 0. But this contradicts the Trichotomy axiom, because 1 > 0 by Lemma 1(h).

Thus, we have shown that $a^{-1} > 0$ if a > 0.

Conversely, if $a^{-1} > 0$, then we apply the same argument to get that $(a^{-1})^{-1} > 0$. But $(a^{-1})^{-1} = a$ by part (b), and so a > 0.

3. Division and Rational Numbers

Unsurprisingly, the real numbers contain the integers.

Theorem 3. Every integer is in \mathbb{R} .

Proof. By the Trichotomy axiom for \mathbb{Z} , the integers consist of the natural numbers, 0, and the additive inverses of the natural numbers.

First, we know that $0 \in \mathbb{R}$ by the Identity axiom.

Next, we show that the natural numbers \mathbb{N} are contained in \mathbb{R} . We proceed by induction. As the base case, $1 \in \mathbb{R}$ by the Identity axiom. Now, let $n \in \mathbb{N}$ be a natural number and suppose that $n \in \mathbb{R}$. Then $n + 1 \in \mathbb{R}$ because the sum of two real numbers is a real number. This completes the inductive proof, showing that every natural number is in \mathbb{R} .

Finally, for each natural number $n \in \mathbb{N}$, since n is in \mathbb{R} , the additive inverse -n is a real number by the Additive Inverses axiom for \mathbb{R} .

By thinking of the integers as living inside the real numbers, we may now divide integers to get "fractions," or rational numbers.

Definition. A real number $x \in \mathbb{R}$ is a **rational number** if there exist integers $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $x = a \cdot b^{-1}$. We write $x = \frac{a}{b}$, and say that $\frac{a}{b}$ is a **fraction** representing the rational number x. The **numerator** of $\frac{a}{b}$ is a and the **denominator** of $\frac{a}{b}$ is b. The set of all rational numbers is denoted \mathbb{Q} .

Remark. Every integer n is a rational number, because $n = \frac{n}{1} \in \mathbb{Q}$.

Lemma 4. For all $x, y \in \mathbb{Q}$, we have the following:

(a)
$$x + y \in \mathbb{Q}$$

(b) $x - y \in \mathbb{Q}$
(c) $x \cdot y \in \mathbb{Q}$
(d) If $y \neq 0$, then $x \cdot y^{-1} \in \mathbb{Q}$.

Proof. We prove (a) and leave (b)–(d) as exercises.

Since x and y are rational numbers, there exist $a, b, c, d \in \mathbb{Z}$ such that $b \neq 0, d \neq 0$, and $x = \frac{a}{b}$ and $y = \frac{c}{d}$. Then

$$x + y = \frac{a}{b} + \frac{c}{d} = a \cdot b^{-1} + c \cdot d^{-1}.$$

Now, clearing denominators, we see that

$$bd(x+y) = bd(a \cdot b^{-1} + c \cdot d^{-1}) = ad + bc.$$

Multiplying by $(bd)^{-1}$ on both sides yields

$$x + y = (ad + bc) \cdot (bd)^{-1}.$$

Notice that ad + bc and bd are integers, and $bd \neq 0$ because $b \neq 0$ and $d \neq 0$. Thus, we have shown that $x + y = \frac{ad+bc}{bd}$ is a rational number.

The next lemma shows that we may always write a rational number as a fraction with a positive denominator.

Lemma 5. Let $x \in \mathbb{Q}$. Then there exists $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $x = \frac{m}{n}$.

Proof. By definition of rational numbers, there exist $a, b \in \mathbb{Z}$ with $b \neq 0$ such that $x = \frac{a}{b}$. If b > 0, then we may set m = a and n = b and we are done.

Otherwise, b < 0. Then -b > 0. Since $x = \frac{a}{b} = \frac{-a}{-b}$, we set m = -a and n = -b.

We now set out to show that each rational number can be written in lowest terms.

Definition. A fraction $\frac{a}{b}$ is in **lowest terms** if for every $d \in \mathbb{N}$, if d|a and d|b, then d = 1.

Example. The fractions $\frac{2}{3}$ and $\frac{10}{15}$ are representations of the same rational number (because crossmultiplying gives $2 \cdot 15 = 3 \cdot 10$. The representation $\frac{2}{3}$ is in lowest terms, while $\frac{10}{15}$ is not.

In order to prove that any rational number x can be represented in lowest terms, we will focus on the denominators that show up in the representations of x as fractions. The representation in lowest terms will be the fraction with the smallest denominator. The following definition is useful in making this precise.

Definition. Let $x \in \mathbb{Q}$. A **possible positive denominator** for x is a positive integer $n \in \mathbb{N}$ such that there exists $m \in \mathbb{Z}$ with $x = \frac{m}{n}$.

Example. The rational number $\frac{2}{3}$ may be represented as $\frac{4}{6}$, $\frac{6}{9}$, and $\frac{10}{15}$ (among infinitely many other fractions). So 3, 6, 9, and 15 are some of the possible positive denominators for this rational number.

Theorem 6. Let $x \in \mathbb{Q}$. There exist $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $x = \frac{m}{n}$ and $\frac{m}{n}$ is in lowest terms.

Proof. Let S be the set of all possible positive denominators of x. By Lemma 5, x has at least one possible positive denominator, and so S is a non-empty subset of N. By the Well-Ordering Principle, the set S has a least element n. Then there exists $m \in \mathbb{Z}$ such that $x = \frac{m}{n}$.

We claim that $\frac{m}{n}$ is in lowest terms. For the sake of contradiction, assume it is not. Then there is some $d \in \mathbb{N}$ such that d|m, d|n, and $d \neq 1$. Thus, there exist integers k and ℓ such that

$$m = dk$$
 and $n = d\ell$.

Therefore,

$$x = \frac{m}{n} = \frac{dk}{d\ell} = \frac{k}{\ell}.$$

Because $n, d \in \mathbb{N}$, we have $\ell \in \mathbb{N}$ as well. Moreover, since $d \neq 1$, we have d > 1. Hence, $\ell < n$. This shows that ℓ is a possible positive denominator for x which is smaller than n, a contradiction.

It follows that $\frac{m}{n}$ is in lowest terms.

4. Least Upper Bounds

The Least Upper Bound Property is perhaps the most subtle of the axioms for \mathbb{R} , but it captures the fundamental nature of the real numbers. Indeed, the standard picture of the real numbers as a "continuum" along a number line rests on this axiom. You will learn more about this axiom in a real analysis course. Here, we will only try to give an idea of what it is and how it is used.

Let S be a subset of the real numbers. A real number a is called an **upper bound** of S if $x \le a$ for all $x \in S$. A real number a is called a **least upper bound** of S if a is an upper bound of S and for all upper bounds b of S, $a \le b$.

Lemma 7. Let S be a subset of \mathbb{R} . The least upper bound of S, if it exists, is unique.

Proof. Suppose a and b are both least upper bounds of S. Then, in particular, b is an upper bound of S, so by the fact that a is a least upper bound we get $a \leq b$. Similarly, a is an upper bound of S, and so the fact that b is a least upper bound implies that $b \leq a$. Therefore, a = b.

The Least Upper Bound Property guarantees that any (non-empty) set of real numbers which has an upper bound has a least upper bound in \mathbb{R} . As the following example illustrates, the least upper bound of a set may or may not be an element of the set.

Example. Let S = [0, 1] be the set of all real numbers x satisfying $0 \le x \le 1$, and let T = (0, 1) be the set of all real numbers x satisfying 0 < x < 1. Then $a \in \mathbb{R}$ is an upper bound for S if and only if a is an upper bound for T if and only if $a \ge 1$. The number 1 is the least upper bound of both sets. Notice that $1 \in S$ but $1 \notin T$.

The Least Upper Bound Property is particularly useful for showing that certain real numbers exist. This next example provides a sketch of a proof that $\sqrt{2}$ exists and is a real number.

Example. Let S be the set of all *rational* numbers x such that $x^2 \leq 2$. Notice that $1 \in S$, and so S is non-empty. We can see also that 2 is an upper bound for S. Indeed, if x > 2, then $x^2 > 4 > 2$, so $x \notin S$. By contrapositive, if $x \in S$ then $x \leq 2$.

Therefore, the Least Upper Bound Property implies that S has a least upper bound $a \in \mathbb{R}$. One can show that $a^2 = 2$; that is, $a = \sqrt{2}$. (You do this by contradiction: If $a^2 < 2$, then a cannot be an upper bound; if $a^2 > 2$, then a will be an upper bound which is not the least upper bound.)

This shows that $\sqrt{2} \in \mathbb{R}$. It turns out (as we will soon prove) that there is no rational number a such that $a^2 = 2$. Thus, this example also shows that \mathbb{Q} does not satisfy the Least Upper Bound Property.