The Principle of Mathematical Induction
Let
$$P(n)$$
 be a statement about $n \in N$
Ex: $P(n) = \frac{n}{2} = \frac{n(n+1)}{2}$
The PoMI is: Suppose
() $P(1)$ is true (base case)
and
(2) For any $n \in N$, if $P(n)$ is true (inductive step)
then $P(n+1)$ is true
then $P(n)$ is true for every $n \in M$.
In symbols,
 $\left\{P(1) \land \left[(\forall n \in M)(P(n) \Rightarrow P(n+1))\right]\right\}$
 $\Rightarrow (\forall n \in M) P(n)$.

The POMI is an axiom of the natural numbers. We assume it to be true.

Thm: For all neW,
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Proof: Let
$$P(n) = "1+2+\dots+n = \frac{n(n+1)}{2}"$$
. We will
prove $(\forall n \in \mathbb{N})P(n)$ by induction on n .

Base Case: When
$$n=1$$
,
 $\sum_{i=1}^{l} i = 1$ and $\frac{1[(1)+1]}{2} = 1$

So $P(1) = \sum_{i=1}^{l} \sum_{i=1}^{l} = \frac{1(1+i)}{2}$ is true.

$$\frac{\text{Inductive Step}: \text{Let } n \in \mathbb{N}. \text{ We will show}}{P(n) \implies P(n+i).}$$

Suppose
$$P(n)$$
 is true. Then
 $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$

i.e.
$$|+2+3+\dots+n| = \frac{n(n+1)}{2}$$
.
Add $n+1$ to both sides to get
 $|+2+3+\dots+n+(n+1)| = \frac{n(n+1)}{2} + (n+1)$
 $= \frac{n(n+1)+2(n+1)}{2}$
 $= \frac{(n+2)(n+1)}{2}$
 $= \frac{(n+1)[(n+1)+1]}{2}$.

Therefore, P(n+1) is true. We conclude, by the principle of mothematical induction, that P(n) is true for all $n \in N$.

$$\frac{\text{Thm}}{\text{I} + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$= \sum_{i=1}^{n} (2i - 1)$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 - 1^{2}}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 - 1^{2}}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

Now,

$$1+3+5+\cdots+(2n-1)+[2(n+1)-1]$$

 $= n^{2}+[2n+2-1]$
 $= n^{2}+2n+1$
 $=(n+1)^{2}$.
Thus, we have shown that
 $P(n+1)$ is true, completing the
inductive step.
By induction, we conclude that
 $P(n)$ is true for all $n \in \mathbb{N}$.
Does the base case have to be $n=1$?
 $No!$

Ex: For every
$$n \in \mathbb{N}$$
 with $n \ge 3$,
 $Z^n \le n!$
Check: $Z^{4} = 16 \le 24 = 4!$
 $Z^{5} = 32 \le 120 = 5!$
 $Z^{4} = 64 \le 720 = 6!$
Proof: Let $P(n) = "Z^n \le n!"$ We will show
 $P(n)$ is the for all $n \in \mathbb{N}$ with $n \ge 3$
by induction.
Base case: When $n = 4$, we have
 $Z^{4} = 16$ and $4! = 4.3.2.1 = 24$,
so $P(4)$ is the former, because $16 \le 24$.
Inductive step: Let $n \in \mathbb{N}$ with $n \ge 3$.
We must show $P(n) \Longrightarrow P(n+1)$.
Assume $P(n)$ is the, so $Z^n \le n!$.

Multiply both sides by Z. Since
$$2 \leq 3 \leq n \leq n+1$$
,
we have
 $2 \cdot 2^n \leq 2 \cdot n! \leq (n+1)n!$
i.e.
 $2^{n+1} \leq (n+1)!$
Thus, $P(n+1)$ is true.
We conclude that $P(n)$ is true for all
 $n \in \mathbb{N}$ with $n \geq 3$.
Note: We could have set
 $Q(n) = P(n+3) = "Z^{n+3} \leq (n+3)!"$
and proved $(\forall n \in \mathbb{N}) Q(n)$ by induction
starting at $n=1$.