The Principle of Mathematical Induction
Let $P(n)$ be a statement about $n \in \mathbb{N}$
Ex: $\quad P(n)=" \sum_{i=1}^{n} i=\frac{n(n+1)}{2} "$

The PoMI is: Suppose
(1) $P(1)$ is true (base case) and
(2) For any $n \in \mathbb{N}$, if $P(n)$ is true (inductive step) then $P(n+1)$ is true
then $P(n)$ is true for every $n \in \mathbb{N}$.
In symbols,

$$
\begin{aligned}
\{P(1) \wedge[(\forall n \in \mathbb{N})(P(n) & \Rightarrow P(n+1))]\} \\
& \Rightarrow(\forall n \in \mathbb{N}) P(n)
\end{aligned}
$$

The $P_{0} M I$ is an axiom of the natural numbers. We assume it to be true.

Why should we accept it? Dominoes, trans, etc.
Thu: For all $n \in \mathbb{N}, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
Proof: Let $P(n)=" 1+2+\cdots+n=\frac{n(n+1) "}{2}$. We will prove $\left(\forall_{n} \in \mathbb{N}\right) P(n)$ by induction on n.

Base Case: when $n=1$,

$$
\sum_{i=1}^{1} i=1 \quad \text { and } \quad \frac{1(1)+1]}{2}=1
$$

So $P(1)=" \sum_{i=1}^{1} i=\frac{1(1+1) "}{2}$ is time.
Inductive Step: Let $n \in \mathbb{N}$. We will show

$$
P(n) \Rightarrow P(n+1)
$$

Suppose $P(n)$ is true. Then

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

ie. $\quad 1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
Add $n+1$ to both sides to get

$$
\begin{aligned}
1+2+3+\cdots+n+(n+1) & =\frac{n(n+1)}{2}+(n+1) \\
& =\frac{n(n+1)+2(n+1)}{2} \\
& =\frac{(n+2)(n+1)}{2} \\
& =\frac{(n+1)[(n+1)+1]}{2} .
\end{aligned}
$$

Therefore, $P(n+1)$ is true.
We conclude, by the principle of mathematical induction, that $P(n)$ is time for all $n \in \mathbb{N}$.

Thu: For every $n \in \mathbb{N}$,

$$
\underbrace{1+3+5+\cdots+(2 n-1)}_{=\sum_{i=1}^{n}(2 i-1)}=n^{2} .
$$

Proof: We proceed by induction on n.
Let $P(n)$ be " $1+3+5+\cdots+(2 n-1)=n^{2}$."
Base Case: When $n=1, P(1)$ is

$$
" 1=1^{2 "}
$$

which is true.

Inductive Step: Let $n \in \mathbb{N}$. We wish to prove $P(n) \Rightarrow P(n+1)$, so we may assume $P(n)$.
Thus,

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

is true (for this n).

Now,

$$
\begin{aligned}
1 & +3+5+\cdots+(2 n-1)+[2(n+1)-1] \\
& =n^{2}+[2 n+2-1] \\
& =n^{2}+2 n+1 \\
& =(n+1)^{2} .
\end{aligned}
$$

Thus, we have shown that $P(n+1)$ is true, completing the inductive step.

By induction, we conclude that $P(n)$ is time for all $n \in \mathbb{N}$.

Does the base case have to be $n=1$?

$$
N_{0}!
$$

Ex: For every $n \in \mathbb{N}$ with $n>3$,

$$
2^{n}<n!
$$

Check:

$$
\begin{aligned}
& 2^{4}=16<24=4! \\
& 2^{5}=32<120=5! \\
& 2^{6}=64<720=6!
\end{aligned}
$$

Proof: Let $P(n)=" 2^{n}<n!"$ We will show $P(n)$ is the for all $n \in \mathbb{N}$ with $n>3$ by induction.

Base case: when $n=4$, we have

$$
2^{4}=16 \text { and } 4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

so $P(4)$ is time, because $16<24$.
Inductive step: Let $n \in \mathbb{N}$ with $n>3$. We must show $P(n) \Rightarrow P(n+1)$.

Assume $P(n)$ is true, so $2^{n}<n!$.

Multiply both sides by 2 . Since $2<3<n<n+1$, ne have

$$
2 \cdot 2^{n}<2 \cdot n!<(n+1)_{n}!
$$

ie.

$$
2^{n+1}<(n+1)!
$$

Thus, $P(n+1)$ is true.

We conclude that $P(n)$ is tie for all $n \in \mathbb{N}$ with $n>3$.

Note: We could have set

$$
Q(n)=P(n+3)=" 2^{n+3}<(n+3)!"
$$

and proved $(\forall n \in \mathbb{N}) Q(n)$ by induction starting at $n=1$.

