Warm-Up: Use induction to show

$$
1+2+2^{2}+2^{3}+\cdots+2^{n}=2^{n+1}-1
$$

for every non-negative integer $n$.

Panty

Def: Let $n \in \mathbb{Z}$ be an integer.
(a) $n$ is even if $n=2 k$ for some $k \in \mathbb{Z}$.
(b) $n$ is odd if $n=2 l+1$ for some $l \in \mathbb{Z}$

These are $\exists$ statements!

Thu: Every integer is even or odd.
Proof: We first show that even g natural number is even or odd. We do this by induction.
Let $P(n)=" n$ is even or odd"
Base Case: when $n=1$, we have

$$
1=2(0)+1
$$

so $n$ is odd. Thus $P(1)$ is true.

Inductive Step: Let $n \in \mathbb{N}$ and suppose $P(n)$ is time. Then $n$ is even or odd.

Case 1: If $n$ is even, then $n=2 k$ for some $k \in \mathbb{Z}$. But then

$$
n+1=2 l+1
$$

is odd.

Case 2: If $n$ is odd, then $n=2 l+1$ for some $l \in \mathbb{Z}$.
Now,

$$
\begin{aligned}
n+1 & =(2 l+1)+1 \\
& =2 l+2 \\
& =2(l+1)
\end{aligned}
$$

so $n+1$ is even.
Thus in both cases $P(n+1)$ holds time.
We conclude that $P(n)$ is tue for every $n \in \mathbb{N}$, ie. each $n \in \mathbb{N}$ is even or odd.

What about the remaining integers?
Zero: $0=2(0)$, so 0 is even.
Negatives: Suppose $n$ is a negative integer.
Then $-n \in \mathbb{N}$, so by above either $-n$ is even or $-n$ is odd.

Case 1: If $-n$ is even, then $-n=2 k$ for some $k \in \mathbb{Z}$. Thus, $n=-2 k=2(-k)$ is also even.

Case 2: If $-n$ is odd, then $-n=2 l+1$ for some $l \in \mathbb{Z}$.
Thus,

$$
\begin{aligned}
n & =-(2 l+1) \\
& =-2 l-1 \\
& =-2 l-2+1 \\
& =-2(l-1)+1
\end{aligned}
$$

is odd.

Is there any integer which is
both even and odd? This would imply 1 is even!

Or, equivalently, $\frac{1}{2} \in \mathbb{Z}$.

How do we know this cant be so?

