

Thm: Every integer is even or odd.
Proof: We first show that every natural
number is even or odd.
We do this by induction.
Let
$$P(n) = "n$$
 is even or odd"
Base Case: When $n = 1$, we have
 $1 = 2(0) + 1$
so n is odd. Thus $P(1)$ is thre.
Inductive Step: Let neW and suppose
 $P(n)$ is the. Then n is even or odd.
Case 1: If n is even, then $n = 2h$
for some $k \in \mathbb{Z}$. But then
 $n + 1 = 2L + 1$
is odd.

$$C_{ase} 2 : If n is odd, then
n=2l+1 for some $l \in \mathbb{Z}$.
Now,
 $n+1 = (2l+1)+1$
 $= 2l+2$
 $= 2(l+1)$
so $n+1$ is even.
Thus, in both cases $P(n+1)$ holds the.
We conclude that $P(n)$ is the for every
 $n \in \mathbb{N}$, i.e. each $n \in \mathbb{N}$ is even or odd.
What about the remaining integers?
Zero: $O = 2(0)$, so O is even.
Megatives: Suppose n is a negative integer.
Then $-n \in \mathbb{N}$, so by above either
 $-n$ is even or $-n$ is odd.
Case 1: If $-n$ is even, then $-n = 2k$
for some $k \in \mathbb{Z}$. Thus, $n = -2k = 2(-k)$
is also even.$$

$$C_{ase 2}: If -n is odd, then-n = 2l + 1 for some l \in Z.Thus,n = -(2l+1)= -2l - 1= -2l - 2 + 1= -2(l-1) + 1is odd.$$

