Lemma: For any
$$a, b, c \in \mathbb{Z}$$
, if $a+b = a+c$,
then $b=c$. [Additive Concellation]
Proof: Suppose $a, b, c \in \mathbb{Z}$ and $a+b = a+c$.
Then
 $b = O + b$ (Identity)
 $= (-a + a) + b$ (Additive inverses)
 $= -a + (a+b)$ (Associativity)
 $= -a + (a+c)$ (Given)
 $= (-a + a) + c$ (Associativity)
 $= 0 + c$ (Additive inverses)
 $= c$. (Identity)
Note: Typically use associativity · commutative interses)
 $= c$. (Identity)
Mode: Typically use associativity · commutative interses)
 $= c$. (Identity)
 $Ex:$ Additive inverses are unique.
If $a, b \in \mathbb{Z}$ with $a + b = 0$, then
since $a + (-a) = 0$ also, we have
 $a+b = a + (-a)$. Thus $b = -a$ by concellation.

Other basic fucts: Lemma: For any $a \in \mathbb{Z}$, $a \cdot O = O$. Proof: Let a & Z. Then $a \cdot O = a \cdot (O + O)$ (Identity) = a·O + a·O. (Distributive Law) Also, $a \cdot 0 = a \cdot 0 + 0$ by the Identity axiom, so $a \cdot O + a \cdot O = a \cdot O + O.$ By Cancellation, ne get a.0=0. Lemma: For any a EZ, - (-a) = a. (HW8) Lemma: For any $a, b \in \mathbb{Z}$, if $a \cdot b = 0$, then a = 0 or b = 0. Iden: Prove the contropositive: if $a \neq 0$ and $b \neq 0$, then $a \cdot b \neq 0$. Consider coses.

Thm: For any
$$a, b, c \in \mathbb{Z}$$
 with $a \neq 0$,
if $a \cdot b = a \cdot c$, then $b = c$.
[Multiplicative Concellation]
Proof: Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$, and suppose
 $a \cdot b = a \cdot c$.
Then $a \cdot b - a \cdot c = 0$
 $a(b - c) = 0$

So
$$a=0$$
 or $b-c=0$ by the previous
lemma. But $a\neq 0$, so $b-c=0$.
That is, $b=c$.

Proof: Exercise.

In other nords, Z is linearly ordered by <.