Recall:
$$N = \text{set of } positive integers}$$
, as defined
by axioms 7-10.

Def: For $a, b \in \mathbb{Z}$, $a \leq b$ means $b - a \in \mathbb{N}$.
 $a \leq b$ means $a \leq b$ or $a = b$.
 $a \geq b$ means $b \leq a$.

Ex: $0 \leq a \leq b = a - 0 \in \mathbb{N} \iff a \in \mathbb{N}$.

Ex: $0 \leq a \ll a - 0 \in \mathbb{N} \iff a \in \mathbb{N}$.

Ex: $0 \leq a \ll a - 0 \in \mathbb{N} \iff a \in \mathbb{N}$.

Ex: $0 \leq a \ll a - 0 \in \mathbb{N} \iff a \in \mathbb{N}$.

Ex: $0 \leq a \ll b$, then $a + c \leq a + b$
(2) If $a \leq b$, then $a + c \leq a + b$
(2) If $a \leq b$, then $a + c \leq a + b$
(2) If $a \leq b$, and $c > 0$, then $a \cdot c \leq b \cdot c$.

Preaf: (1) Suppose $a \leq b$. Then $b - a \in \mathbb{N}$.
Since
 $(b + c) - (a + c) = b - a$,
 $u \in have (b + c) - (a + c) \in \mathbb{N}$.
That is,
 $a + c \leq b + c$.

The Well-Ordering axiom (#10) is the only one ne haven't used yet. It says that any non-empty subset of IN has a smallest element. An element $a \in S$ is the smallest element of S if for all $x \in S$, $a \in x$. In symbols: (Vx ES) (a Ex) Observe that a smallest element in S, if it excists, is unique. $(\forall x \in S)(a \leq x)$ and $(\forall x \in S)(b \leq x)$ implies $a \in b$ and $b \in a$, so a = b.

Lemma: The integer 1 is the smallest
element of N.
Proof: First, we know N has a smallest
element by the Well-Ordening axiom.
Call it a.
Since a in for every neN, we have
a i. Theafore a =1 or a i. If a=1,
we are done.
To show a i is fulse, we will assume
it's thre and derive a contradiction.
Formally, if
$$P \Longrightarrow (a \text{ fulse statement})$$
 is
thre, then it must be that P is fulse.
So assume a i. Because a eM, O a.
Multiply the inegulity a i by a >0 to
get
a:a < 1.a = a.

Now, a. a
$$\in IN$$
 by Positive Closure, which
contradicts a being the smallest element
of N.
Thus, our assumption that a ≤ 1 is false,
so a = 1.
This actually shows that the integers
are what you think they are:
• We know O, I $\in \mathbb{Z}$ by the Identity axiom.
• We know O, I $\in \mathbb{Z}$ by the Identity axiom.
• We also know $1+1=2$
 $2+1=3$
 $3+1=4$
i
are positive integers.
If there was another positive number x not on this
list, then it would satisfy $n < x < n+1$ for
some $n \in \mathbb{N}$. But then $0 < x - n < 1$, which violates
the theorem.

• The only other integers, by Trichotomy,
satisfy
$$-a \in N$$
. That is, they are
the additive inverses of elements in M .
Together, $Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$.

$$\frac{Proof}{(a)} \quad Suppose \quad x, y \in \mathbb{Z} \quad are \quad both \quad odd \quad numbers.$$

$$Then \quad there \quad exist \quad integers \quad k_1 \quad end \quad k_2 \quad such \quad that \quad x = 2k_1 + 1$$

$$ard \quad y = 2k_2 + 1 \quad .$$

$$Then \quad x + y = (2k_1 + 1) + (2k_2 + 1)$$

$$= 2k_1 + 2k_2 + 2$$

$$= 2(k_1 + k_2 + 1).$$

That is, x+y is even.

(b), (c) exercises.

Proof: (a) Suppose x is even or y is even.

Case 1: x is even.
Then there is
$$k \in \mathbb{Z}$$
 such that
 $x = \mathbb{Z}k$. Thus,
 $x \cdot y = (\mathbb{Z}k) \cdot y = \mathbb{Z} \cdot (k \cdot y)$

is even.

Case 2: y is even.
Then there is
$$l \in \mathbb{Z}$$
 such that
 $y = 2l$. Thus,
 $x \cdot y = x \cdot (2l) = 2 \cdot (xl)$

is even. (b) exercise.