Recall: $\mathbb{N}=$ set of positive integers, as defined by axioms 7-10.
Def: For $a, b \in \mathbb{Z}, a<b$ means $b-a \in \mathbb{N}$.

- $a \leqslant b$ means $a<b$ or $a=b$.
- $a>b$ mems $b<a$.

Ex: $0<a \Leftrightarrow a-0 \in \mathbb{N} \Leftrightarrow a \in \mathbb{N}$.

Lemma: Let $a, b, c \in \mathbb{Z}$.
(1) If $a<b$, then $a+c<a+b$
(2) If $a<b$ and $c>0$, then $a \cdot c<b \cdot c$.

Proof: (1) Suppose $a<b$. Then $b-a \in \mathbb{N}$.
Since

$$
(b+c)-(a+c)=b-a,
$$

we have $(b+c)-(a+c) \in \mathbb{N}$.
That is,

$$
a+c<b+c
$$

(2) Suppose $a<b$ and $c>0$. Then $b-a \in \mathbb{N}$ and $c \in \mathbb{N}$.
By Positive Closure, $(b-a) \cdot c \in \mathbb{N}$. By the Distributive Law,

$$
\begin{aligned}
& \quad b \cdot c-a \cdot c \in \mathbb{N} \text {, } \\
& \text { i.e. } \quad a \cdot c<b \cdot c \text {. }
\end{aligned}
$$

The Well-Ordering axiom (\#10) is the only one ne haven't used yet. It says that any non-empty subset of \mathbb{N} has a smallest element.

An element $a \in S$ is the smallest element of S if for all $x \in S, a \leq x$.

In symbols: $(\forall x \in S)(a \leq x)$
Observe that a smallest element in S, if it exists, is unique.

$$
(\forall x \in S)(a \leq x) \text { and }(\forall x \in S)(b \leq x)
$$ implies $a \leq b$ and $b \leq a$, so $a=b$.

Lemma: The integer 1 is the smallest
element of \mathbb{N}.
Proof: First, we know \mathbb{N} has a smallest element by the Well-Ordeing axiom. Call it a.

Since $a \leq n$ for every $n \in \mathbb{N}$, ne have $a \leq 1$. Therefore $a=1$ or $a<1$. If $a=1$, we are done.

To show $a<1$ is false, ne will assume it's tue and derive a contradiction.

Formally, if $P \Rightarrow$ (a false statement) is the, then it must be that P is false.

So assume $a<1$. Because $a \in \mathbb{N}, 0<a$.
Multiply the inequality $a<1$ by $a>0$ to get

$$
a \cdot a<1 \cdot a=a .
$$

Now, $a \cdot a \in \mathbb{N}$ by Positive Closure, which contradicts a being the smallest element of N.

Thus, our assumption that $a<1$ is false, so $a=1$.

This actually shows that the integers are what you think they are:

- We know $0,1 \in \mathbb{Z}$ by the Identity axiom.
- We also know $1+1=2$

$$
\begin{aligned}
& 2+1=3 \\
& 3+1=4
\end{aligned}
$$

are positive integers.
If thee was another positive number x not on this list, then it would satisfy $n<x<n+1$ for some $n \in \mathbb{N}$. But then $0<x-n<1$, which violates the theorem.

- The only other integers, by Trichotomy, satisfy $-a \in \mathbb{N}$. That is, they are the additive inverses of elements in \mathbb{N}.

Together, $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

Note: The handout shows this slightly more rigorously, by proving the Principle of
Mathematical Induction.

Back to even and odd numbers.
Thu: Let $x, y \in \mathbb{Z}$.

(a) If x is odd and y is odd, then $x+y$ is even.
(b) If x is even and y is even, then $x+y$ is even.
(c) If x is even and y is odd, then $x+y$ is odd.

Proof: (a) Suppose $x, y \in \mathbb{Z}$ are both odd numbers. Then there exist integers k_{1} and k_{2} such that
and

$$
\begin{aligned}
& x=2 k_{1}+1 \\
& y=2 k_{2}+1
\end{aligned}
$$

Then

$$
\begin{aligned}
x+y & =\left(2 k_{1}+1\right)+\left(2 k_{2}+1\right) \\
& =2 k_{1}+2 k_{2}+2 \\
& =2\left(k_{1}+k_{2}+1\right) .
\end{aligned}
$$

That is, $x+y$ is even.
(b), (c) exercises.

Thu: Let $x, y \in \mathbb{Z}$.
(a) If x is even or y is even, then $x \cdot y$ is even.
(b) If x is odd and y is odd, then $x \cdot y$ is odd.

Proof: (a) Suppose x is even or y is even.
Case 1: x is even.
Then there is $k \in \mathbb{Z}$ such that $x=2 k$. Thus,

$$
x \cdot y=(2 k) \cdot y=2 \cdot(k \cdot y)
$$

is even.
Case 2: y is even.
Then there is $l \in \mathbb{Z}$ such that $y=2 l$. Thus,

$$
x \cdot y=x \cdot(2 l)=2 \cdot(x l)
$$

is even.
(b) exercise.

