Ex: Every integer d divides 0, because
$$0 = d \cdot 0$$
.
• 1 divides every integer n, because $n = 1 \cdot n$.
• 0 only divides itself, because $n = 0 \cdot k \implies n = 0$.

Ex: Every integer d divides 0, because
$$0=d:0$$
.
1 divides every integer n, because $n=1:n$.
0 only divides itself, because $n=0:k \Rightarrow n=0$.
Def: When dln, we say d is a divisor
of n and n is a multiple of d.
Ex: The divisors of 15 are $\pm 1, \pm 3, \pm 5, \pm 15$.
Warning: dln is the sentence "I divides n"
 d/n is the number $\frac{d}{n}$
Note: When $d \neq 0$,
dln is time $\iff n = dk$ for some $k \in \mathbb{Z}$
 $\iff \frac{\pi}{d}$ is an integer

We usually avoid division, as that can take us out of the integers.

Then: Let
$$d, n \in \mathbb{Z}$$
. If $d \ln$, then $(-d) \ln$.
Proof: Suppose $d \ln$. Then there exists $k \in \mathbb{Z}$ such that $n = dk$. Then
 $n = [(-1) \cdot (-1)] \cdot dk = (-d)(-k)$
Since $-k \in \mathbb{Z}$, this shows $(-d) \ln$.
For this reason, we often only list positive divoors.
Then: Let $d, n \in \mathbb{N}$. If $d \ln$, then $d \le n$.
Proof: Suppose $d \ln$. Then there exists $k \in \mathbb{Z}$ such that
 $n = dk$.
Now, $k \le 0$ or $k \ge 1$.
Suppose, for the safe of contradiction, that
 $k \le 0$. Since $d > 0$, $n = dk \le 0$, which
contradicts $n \in \mathbb{N}$.

Proof: Hw 10.

This theorem says divisibility is a <u>partial</u> order on N.

Another partial order is 5.