Warm-Up: Let $x, y \in \mathbb{Z}$. Show that if $x y$ is even, then x is even or y is even.

Divisibility
Def: Let d and n be integers. We say d divides n if there exists an integer k such that $n=d k$.

Note on definitions: A definition is a \Leftrightarrow statement, but it is often written as $a \Rightarrow$ statement.
So
d divides $n \Leftrightarrow(\exists k \in \mathbb{Z})(n=d k)$
Notation: $d \mid n$ means "d divides n "

Ex: $21 n \Leftrightarrow n=2 k$ for some $k \in \mathbb{Z}$
$\Leftrightarrow n$ is even.
Ex: $3 \mid n \Leftrightarrow n=3 k$ for some $k \in \mathbb{Z}$

$$
\begin{array}{ccc}
\text { So } 3 \text { diodes } 3 & (3=3.1) \\
-9 & (9=3.3) \\
- & -6 & (-6=3 .(-2)) \\
& 0 & (0=3.0)
\end{array}
$$

Ex: - Every integer d divides 0 , because $0=d \cdot 0$.

- 1 divides every integer n, because $n=1 \cdot n$.
- 0 only divides itself, because $n=0 \cdot k \Rightarrow n=0$.

Def: When d / n, we say d is a divisor of n and n is a multiple of d.

Ex: The divisors of 15 are $\pm 1, \pm 3, \pm 5, \pm 15$.
Warning: d / n is the sentence " d divides n "
d / n is the number $\frac{d}{n}$
Note: When $d \neq 0$,
$d \mid n$ is time $\Leftrightarrow n=d \cdot k$ for some $L \in \mathbb{X}$ $\Leftrightarrow \frac{n}{d}$ is an integer

We usually avoid division, as that can take us out of the integers.

Thu : Let $d, n \in \mathbb{Z}$. If $d \ln$, then $(-d) \ln$.
Proof: Suppose d / n. Then there exists $k \in \mathbb{Z}$ such that $n=d k$. Then

$$
n=[(-1) \cdot(-1)] \cdot d k=(-d)(-k)
$$

Sine $-k \in \mathbb{Z}$, this shows $(-d) \ln$.

For this reason, we often only list positive divisors.

The: Let $d, n \in \mathbb{N}$. If d / n, then $d \leq n$.
Proof: Suppose din. Then there exists $k \in \mathbb{Z}$ such that

$$
n=d k \text {. }
$$

Now, $k \leq 0$ or $k \geqslant 1$.
Suppose, for the sate of contradiction, that $k \leqslant 0$. Since $d>0, n=d k \leqslant 0$, which contradicts $n \in \mathbb{N}$.

So $k \geqslant 1$. Multiply by d to get

$$
d k \geqslant d
$$

ie. $n \geqslant d$.

The: For any $a, b, c \in \mathbb{N}$,
(1) ala. [Reflexinty]
(2) If a / b and $b l a$, then $a=b$. [Andisymmetry]
(3) If alb and $b l c$, then a lc. [Tmmsitity]

Proof: HW 10 .

This theorem says dinsibility is a partial order on \mathbb{N}.

Another partial order is \leq.

