The handont contains a list of axioms for the real numbers.

Observations: Most of these were also axioms for Z

Def: A real number $x \in \mathbb{R}$ is a rational number if there exist integers $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $x = a \cdot b^{-1}$.

Write
$$x = \frac{a}{b}$$
, and say $\frac{a}{b}$ is a fraction representing x .
The set of all rational numbers is Q .

$$\frac{E_X}{3} = \frac{2}{3} \text{ and } \frac{8}{12} \text{ and } \frac{10}{15} \text{ are all different} \\ \text{functions representing the same rational number.} \\ \frac{R_{nle}}{b} = \frac{2}{3} \iff a \cdot b^{-1} = c \cdot d^{-1} \iff ad = bc \\ \frac{C_{nle}}{b} = \frac{2}{3} \iff a \cdot b^{-1} = c \cdot d^{-1} \iff ad = bc \\ \frac{C_{noss} - multiply}{c_{noss} - multiply}$$

Lemma: For all
$$x, y \in \mathbb{Q}$$
,

a)
$$x + y \in \mathbb{Q}$$

b) $x - y \in \mathbb{Q}$
c) $x \cdot y \in \mathbb{Q}$
d) if $y \neq 0$, then $x \cdot y^{-1} \in \mathbb{Q}$.

Proof: (a) Since x and y are rational, there exist integers $a, b, c, d \in \mathbb{Z}$ such that $b \neq 0$, $d \neq 0$, and

$$x = \frac{\alpha}{b}, y = \frac{1}{x}.$$

Then

$$x+y = \frac{a}{b} + \frac{c}{d} = a \cdot b^{-1} + c \cdot d^{-1}$$

So
 $(bd) \cdot (x+y) = (bd) (ab^{-1} + cd^{-1})$
 $= ad + bc.$

Thus,

$$x + y = (ad + bc) \cdot (bd)^{-1}$$

 $= \frac{ad + bc}{bd}$.

Now
• ad + bc, bd
$$\in \mathbb{Z}$$

• bd $\neq O$ because $b \neq O$ and $d \neq O$.
So $x + y = \frac{ad + bc}{bd} \in \mathbb{Q}$.
(c) - (d): Hw 12

Lemma: Let $x \in \mathbb{Q}$. Then there is $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $x = \frac{m}{n}$. Proof: Since x is rational, there exist $a, b \in \mathbb{Z}$ such that $x = \frac{a}{b}$. • If b > 0, take m = a and n = b. • If b < 0, take m = -a and n = -b, since $x = \frac{a}{b} = \frac{-a}{-b}$.

Def: A function
$$\frac{a}{b}$$
 is in lowest terms if for
every deN, if dla and dlb, then d=1.
That is, I is the only positive divisor a and
b have in common.
Ex: $\frac{2}{3}$ is in lovest terms. $\frac{8}{12}$ is not because 418 and 4112

B

Def: Let
$$x \in \mathbb{Q}$$
. A possible positive denominator
for x is a positive integer $n \in \mathbb{N}$ such that
there exists $m \in \mathbb{Z}$ with $x = \frac{m}{n}$.
Ex: $\frac{2}{3} = \frac{4}{6} = \frac{8}{12} = \frac{20}{30} = \cdots$
so 3, 6, 12, 30 we some of the possible denominators
for this rational number.

Thm: Let
$$x \in \mathbb{Q}$$
. There exist $n \in \mathbb{Z}$ and $n \in \mathbb{N}$ such
that $x = \frac{m}{n}$ and $\frac{m}{n}$ is in lowest terms.
Proof: Let S be the set of possible possible
denominators for x.
By the lemma, x has a possible possible denominator,
so S is a non-empty subset of N.
By the Well - Ordering Principle, S has a smallest
element. Call it n.

So
$$x = \frac{m}{n}$$
 for some $m \in \mathbb{Z}$.
Claim: $\frac{m}{n}$ is in lovest terms.

To prove this, assume it is not. Then there
exists
$$d \in \mathbb{N}$$
 such that $d \mid m$ and $d \mid n$,
and $d \neq 1$. So there exist k, $l \in \mathbb{Z}$
such that
 $m = dk$ and $n = dl$
Thus,

$$x = \frac{m}{n} = \frac{dL}{LL} = \frac{L}{L}.$$