Then (Division Algorithm): Let $d \in \mathbb{N}$. Then for any $n \in \mathbb{Z}$, there exists a unique $q \in \mathbb{Z}$ and a unique $r \in \mathbb{Z}$ such that n = dq + r

and O ≤ r ≤ d -1.

 $(\forall d \in \mathbb{N})(\forall n \in \mathbb{Z})(\exists ! q \in \mathbb{Z})(\exists ! r \in \mathbb{Z})[(n = dq + r) \land (0 \leq r \leq n - 1)]$

Here,
$$q$$
 is the quotient
 r is the remainder
 n is the dividend (numerator)
 d is the divisor (denominator)
Note: $n = dq + r \iff \frac{n}{d} = q + \frac{r}{d}$
is \mathcal{U} is \mathcal{U} in \mathcal{Q}

Proof: Let
$$d \in N$$
 and $n \in \mathbb{Z}$. We must prove two things:
Existence: There exist $q, r \in \mathbb{Z}$ satisfying
the theorem statement.
Uniqueness: If q_1, r_1 and q_3, r_2 both satisfy
the theorem, then $q_1 = q_2$ and $r_1 = r_2$.
Part 1: Existence Consider all possible solutions to
 $n = dx + y$
where $x, y \in \mathbb{Z}$ and $y \ge 0$.
Let S be the set of all y-values in these solutions.
i.e., $S = \{y \in \mathbb{Z} \mid y \ge 0 \text{ and } (\exists x \in \mathbb{Z})(y \ge n - dx)\}$
Ex: $d = 6$, $n = 317$ $\xrightarrow{x \mid 317 - 6x}_{=13}$ The remainder is
 $s = \frac{1}{2}$ The semiclest element.

We now show that S is non-empty.

$$C_{ase} : n \ge 0$$
. Then taking $x = 0$, we have
 $y = n - d(0) = n \ge 0$
So $n \in S$.

Case 2:
$$n < 0$$
. Then taking $x = n$, we have
 $y = n - d(n) = n(1 - d)$.
Since $d \in N$, $1 - d \in 0$. So $n(1 - d) \ge 0$,
and hence $n(1 - d) \in S$.

Therefore S is nonempty. By the Well-Ordening
Property, S has a smallest element. Call it r.
$$\frac{Why \ does \ this \ work? \ If \ O \in S, \ then \ O \ is \ the}{smallest \ element. \ Otherwise, \ S \ is a \ subset \ of \ IN and \ w \ can \ use \ Well-Ordening.}$$
Since $r \in S$, there exists $g \in \mathbb{Z}$ such that

The only thing left to show is that
$$0 \le r \le d-1$$
.
Because $r \le S$, we have $0 \le r$.
Suppose that $r > d-1$. Then $r > d$ (since $r \le Z$),
so $r - d > 0$.
But since $n - d(q+1) = (n - dq) - d = r - d$,
this means that $r - d \le S$. But this controlates
the fact that r is the least element of S.
So $a \le d-1$ must be true.

$$\frac{Part 2: Uniqueness}{are such that} = Suppose now that $q_1, q_2, r_1, r_2 \in \mathbb{Z}$
are such that
 $n = dq_1 + r_1$,
 $n = dq_2 + r_2$,$$

and $0 \le r_1 \le d-1$, $0 \le r_2 \le d-1$.

Now, $dq_1 + r_1 = dq_2 + r_2$,

50

$$r_1 - r_2 = dq_2 - dq_1 = d(q_2 - q_1).$$

So the only possibility is $r_1 - r_2 = 0$, i.e., $r_1 = r_2$. Now, $r_1 - r_2 = 0 = d \cdot (q_2 - q_1)$. Since $d \neq 0$ (deIN), this forces $q_2 - q_1 = 0$, i.e. $q_1 = q_2$.