Division Algorithm
Thu (Diustion Alyonthm): Let $d \in \mathbb{N}$. Then for any $n \in \mathbb{Z}$, there exists a unique $q \in \mathbb{Z}$ and a unique $r \in \mathbb{Z}$ such that

$$
n=d q+r
$$

and $0 \leqslant r \leqslant d-1$.

$$
(\forall d \in \mathbb{N})(\forall n \in \mathbb{Z})(\exists!q \in \mathbb{Z})(\exists!r \in \mathbb{Z})[(n=d q+r) \wedge(0 \leq r \leq n-1)]
$$

Warm-Up: Let $d=6, n=317$. Find $q$ and $r$.

Here, $q$ is the quotient
$r$ is the reminder
$n$ is the dividend (numerator)
$d$ is the divisor (denominator)
Note: $n=d q+r \Leftrightarrow \frac{n}{d}=q+\frac{r}{d}$

$$
\text { in } \mathbb{Z} \quad \text { in } \mathbb{Q}
$$

Proof: Let $d \in \mathbb{N}$ and $n \in \mathbb{Z}$. We must prove two things:
Existence: There exist $q, r \in \mathbb{Z}$ satisfying the theorem statement.

Uniqueness: If $q_{1}, r_{1}$ and $q_{2}, r_{2}$ both satisfy the theorem, then $q_{1}=q_{2}$ and $r_{1}=r_{2}$.

Part 1: Existence Consider all possible solutions to

$$
n=d x+y
$$

where $x, y \in \mathbb{Z}$ and $y \geqslant 0$.
Let $S$ be the set of all $y$-values in these solutions.

$$
\text { ie., } \quad S=\{y \in \mathbb{Z} \mid y \geqslant 0 \text { and }(\exists x \in \mathbb{Z})(y=n-d x)\}
$$

Ex: $d=6, n=317$
So $S=\{5.11,17,23, \ldots\}$
The remainder is the smallest element.

We now show that $S$ is nonempty.
Case 1: $n \geqslant 0$. Then taking $x=0$, we have

$$
y=n-d(0)=n \geqslant 0
$$

so $n \in S$.

Case 2: $n<0$. Then taking $x=n$, we have

$$
y=n-d(n)=n(1-d) .
$$

Since $d \in \mathbb{N}, 1-d \leq 0$. So $n(1-d) \geqslant 0$, and hence $n(1-d) \in S$.

Therefore $S$ is nonempty. By the Well-Ordening Property, $S$ has a smallest element. Call it $r$.
$\left[\begin{array}{l}\text { Why does this work? If } O \in S \text {, then } O \text { is the } \\ \text { smallest element. Otherwise, } S \text { is a subset of } \mathbb{N} \\ \text { and we can use Well-Ordering. }\end{array}\right]$
Since $r \in S$, there exists $q \in \mathbb{Z}$ such that

$$
n=d q+r .
$$

The only thing left to show is that $0 \leq r \leq d-1$.
Because $r \in S$, we have $0 \leq r$.
Suppose that $r>d-1$. Then $r \geqslant d$ (since $r \in \mathbb{Z}$ ), so $r-d \geqslant 0$.

But since

$$
n-d(q+1)=(n-d q)-d=r-d,
$$

this means that $r-d \in S$. But this contradicts the fact that $r$ is the least element of $S$. So $a \leq d-1$ must be true.

Part 2: Uniqueness Suppose now that $q_{1}, q_{2}, r_{1}, r_{2} \in \mathbb{Z}$ are such that

$$
\begin{aligned}
& n=d q_{1}+r_{1}, \\
& n=d q_{2}+r_{2},
\end{aligned}
$$

and $\quad 0 \leq r_{1} \leq d-1, \quad 0 \leq r_{2} \leq d-1$.
$\quad$ Now, $\quad d q_{1}+r_{1}=d q_{2}+r_{2}$,
so

$$
r_{1}-r_{2}=d q_{2}-d q_{1}=d\left(q_{2}-q_{1}\right)
$$

Thus, $d \mid\left(r_{1}-r_{2}\right)$. But $-(d-1) \leq r_{2} \leq 0$, so

$$
d \cdot(-1)<-(d-1) \leq \underbrace{r_{1}-r_{2}}_{d \cdot\left(q_{2}-q_{1}\right)} \leq d-1<d \cdot 1
$$

So the only possibility is $r_{1}-r_{2}=0$, ie., $r_{1}=r_{2}$.
Now, $r_{1}-r_{2}=0=d \cdot\left(q_{2}-q_{1}\right)$. Since $d \neq 0 \quad(d \in \mathbb{N})$, this forces $q_{2}-q_{1}=0$, ie. $q_{1}=q_{2}$.

