Let P, Q, R, ... stand for sentences.

$$Ex: P = "It is Friday."$$

 $Q = "We're having fun in Math 3345."$
 $\neg P, PAQ, P \Rightarrow Q, etc.$

Ex: What is ¬(¬P)? Make another truth tuble:

$$\begin{array}{c|c} P & \neg P & \neg (\neg P) \\ \hline T & F & T \\ F & T & F \end{array}$$

If P is the, then
$$\neg P$$
 is table. If $\neg P$ is
folse, then $\neg (\neg P)$ is thre. So if P is the
then $\neg (\neg P)$ is the.
Similarly, if P is folse, then $\neg (\neg P)$ is folse.
So P and $\neg (\neg P)$ always have the
same finith value. We say they are
logically equivalent and write
 $P = \neg (\neg P)$.

$$\mathsf{P} \equiv \neg (\neg \mathsf{P})$$

2 <u>Conjunction</u>: 1 means "and" PAQ is the exactly den both P and Q are the.

P	Q	PAQ
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Ρ	Q	PVQ
T	T	F
Т	F	Т
F	Т	Т
F	F	F

$$\underbrace{N_{o}te}{P \vee Q} = Q \vee P$$
$$P \vee (Q \vee R) = (P \vee Q) \vee R$$

How do the operations
$$\neg$$
, \land , \lor interact with one another?

Then PAQ is "mis even and n is odd."

This becomes false if m is not even OR n is not odd.

= - P V - Q