Warm-Up: Find integers x and y such that 51x - 13y = 1

Last time: m & IN, a, b & Z

 $a = b \mod m$ \iff same remainder when divided by m.

Cor: Let a = Z and m = N.

- (a) There is a unique integer r such that $0 \le r \le m-1$ and $a \equiv r \mod m$. Specifically, r is the remainder left upon dividing a by m.
- (b) a = 0 mod m if and only if m/a.

Properties

Thm: Let mEN.

- (a) For all a∈Z, a = a mod m [Reflexive]
- (b) For all a, b = Z, if a = b mod m, then b = a mod m. [Symmetric]
- (c) For all a,b,c ∈ Z, if a = b mod m
 and b = c mod m, Hen a = c mod m [Transitive]

Proof: HW 15.

Together, these properties say that congruence mod m is an <u>equivalence</u> relation.

Equivalence relations give a notion of "sameness."

Other examples: · Equality (of integers, real numbers, functions,...)
· Congruence of triangles
· Similarity of triangles

- (a) a+c = b+d mod m. (b) a-c = b-d mod m.
- (c) ac = bd mod m

Ynoof: HW 15.

Ex: When
$$m=2$$
, every $a \in \mathbb{Z}$ satisfies exactly one of $a \equiv 0 \mod 2$ $\implies a$ is even $a \equiv 1 \mod 2$ $\implies a$ is odd

So when we do arithmetic mod 2, we can replace every integer by 0 or 1.

We have

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 2 = 0 \mod 2$
 $0 \cdot 0 = 0$
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$

So ue have the following + and · tables:

mod 2	0	
0	0	1
l	l	0

modz	0	1
0	0	O
l	0	l

0	0	1	0	0	O
1	l	0	l	0	(
rec	overs				
+	even even odd	old	•	even even	old
	1	_			
even	even	odd	even	even	even

Ex: What is the remainder when 22.19 is divided by 3?

Recall: Remainder is the unique rell such that 0 = r \le 2 and 22.19 = r mod 3.

meaning 22.19 leaves a remainder of 1 then divided by 3.

$$(754 + 1083) \cdot 17$$

$$(754 + 1083) \cdot 17 \equiv (4 + 3) \cdot 2 \mod 5$$

So the remainder is 4.