Warm-Up: Make + and - tables for arithmetic modulo 3.

The: Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. If

$$
a \equiv b \bmod m
$$

then

$$
a^{n} \equiv b^{n} \bmod m
$$

for every $n \in \mathbb{N}$.
Proof: Let $P(n)$ be " $a^{n} \equiv b$ " $\bmod m$." Well use induction.

Base Case: $P(1)$ is given.
Inductive Step: Let $n \in \mathbb{N}$ and suppose $P(n)$ is true. That is, $a^{n} \equiv b^{n} \bmod m$.

Since $a \equiv b \bmod m$, we get

$$
a^{n} \cdot a \equiv b^{n} \cdot b \bmod m,
$$

ie., $a^{n+1} \equiv b^{n+1} \bmod m$. So $P(n+1)$ is time.

Thus $P(n)$ is time for all $n \in \mathbb{N}$ by $P \cdot M I$.

Ex: What is the remainder when 91^{100} is divided by 3?

Since $91 \equiv 1 \bmod 3$, we have

$$
\begin{aligned}
91^{100} & \equiv 1^{100} \bmod 3 \\
& \equiv 1 \bmod 3 .
\end{aligned}
$$

So the remainder is 1 .

Ex: What is the remainder when 257^{50} is divided by 5?

Since $257 \equiv 2 \bmod 5$, we have

$$
257^{50} \equiv 2^{50} \bmod 5 .
$$

Now, $2^{4}=16$, so $2^{4} \equiv 1 \bmod 5$.
Write

$$
50=4 \cdot 12+2 . \quad(50 \text { dived by } 4)
$$

Then

$$
2^{50}=2^{4 \cdot 12+2}=\left(2^{4}\right)^{12} \cdot 2^{2},
$$

So

$$
\begin{aligned}
257^{50} & \equiv 2^{50} \\
& \equiv\left(2^{4}\right)^{12} \cdot 2^{2} \quad \bmod 5 \\
& \equiv 1^{12} \cdot 4 \quad \bmod 5 \\
& \equiv 4 \quad \bmod 5 .
\end{aligned}
$$

The remainder is 4 .

Primes Redux
Thu: Every $n \in \mathbb{N}$ such that $n \geqslant 2$ is either a prime or a product of primes.

Proof \#1: Suppose, to get a contradiction, that the theorem is false.

Let S be the set of all counterexamples, i.e. $n \in S$ if and only if $n \geqslant 2$ and n is not prime and n is not a product of primes.

Since S is not empty, by the well-Ordering
Axiom there is a least element in S.
Axiom, there is a least element in S. Call it a.

Since $a \geqslant 2$, a is either prime or composite.

- If a is prime, then $a \notin S$, a contradiction.
- If a is composite, then $a=d k$ for some $d, k \in \mathbb{N}$ such that $2 \leqslant d \leqslant a-1$ and $2 \leqslant k \leqslant a-1$.

Thus, $d, k \notin S$, so d and k are each prime or products of primes. Then so is $a=d \cdot k$, implying $a \notin S$, a contradiction.

To prove this without contradiction, we use a version of induction.

Idea: Let $P(n)$ be the sentence " n is either a prime or a product of primes"

Base Case: $P(2) \checkmark(2$ is prime)
Inductive Step: $P(n) \Rightarrow P(n+1)$
The factorization of n has nothing to do with the factorization of $n+1$.

Instead, let

$$
Q(n)=P(2) \wedge P(3) \wedge \cdots \wedge P(n)
$$

Base Case: $Q(2)=P(2) \checkmark$ (unchanged)

So to prove $P(n+1)$, we get to use any and all previous cases.

Proof \#2: Complete (strong) induction.
Base Case: 2 is prime.
Inductive Step: Assume 2,3,..,n are each prime or a product of primes. We must prove $n+1$ is also.

Case 1: $n+1$ is prime.
Case 2: $n+1$ is composite.
Then $n+1=d \cdot k$ for some $d, k \in \mathbb{N}$ with $2 \leq d, k \leq n$.

Thus, d and k are each primes or products of primes, so $n+1=d \cdot k$ is a product of primes.
This completes the inductive step. By (complete) induction, every integer $n \geqslant 2$ is prime of a product of primes.

