Thu (Division by a prime): Let p be a prime number. Then for all integers $x, y \in \mathbb{Z}$, if $p \mid x y$ then ply or ply.
ie., $x y \equiv 0 \bmod p \Rightarrow \quad x \equiv 0 \bmod p$ or $y \equiv 0 \bmod p$

First:

Lemma: Let p be a prime and $x \in \mathbb{Z}$. If $p \not x x$, then $\operatorname{gcd}(p, x)=1$.
Proof: Let $d=\operatorname{gcd}(p, x)$. Then $d \in \mathbb{N}$ and $d \mid p$ and $d \mid x$.

Since $d l_{p}$, either $d=1$ or $d=p$. But $p \not x x$, so it must be that $d=1$.

Proof of Theorem on Division by a prime:
Let p be a prime and let $x, y \in \mathbb{Z}$. Suppose ploy.
If p / x, then we are done.
So suppose pix. We must show ply.
Since $p \nmid x, \operatorname{gcd}(p, x)=1$ by the Lemma.
Thus, there exist $u, v \in \mathbb{Z}$ such that

$$
p u+x v=1
$$

Multiplying by y, we get

$$
p y u+x y v=y .
$$

Since plpyn and plxyv (because play), we get ply.

Cor: Let p be a prime. For each $n \in \mathbb{N}$ and all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}$, if $p \mid\left(x_{1}, x_{2} \cdots x_{n}\right)$ then p divides at least one of $x_{1}, x_{2}, \ldots, x_{n}$.

Proof: Let $P(n)$ be the sentence
"For all $x_{1}, \ldots, x_{n} \in \mathbb{Z}$, if $p \mid\left(x_{1} \cdots x_{n}\right)$ then p divides at least one of the x_{i}."

We will prove $P(n)$ holds for all $n \in \mathbb{N}$ by induction.

Base Case: $P(1)$ is automatically tome, since if $p \mid x_{1}$, then $p \mid x_{1}$
$\frac{\text { Inductive Step: Let } n \in \mathbb{N} \text { and suppose }}{P(n)}$ $P(n)$ is true.

Let $x_{1}, \ldots, x_{n+1} \in \mathbb{Z}$ and suppose

$$
p \mid\left(x_{1} \cdots x_{n}\right) \cdot\left(x_{n+1}\right)
$$

By the theorem on division by a prime, $p \mid\left(x_{1} \cdots x_{n}\right)$ or $p \mid x_{n+1}$.

If $p \mid\left(x_{1} \cdots x_{n}\right)$, then by $P(n), p \mid x_{i}$ for some $1 \leq i \leq n$, and we have the desired conclusion.

If $p_{l} x_{n+1,}$, then we also have the desired conclusion.

In either case, $P(n+1)$ is true, completing the inductive step.

Unique Factorization
We would like to say each $n \in \mathbb{N}$ has a unique prime factorization, ie., n can be written as a product of primes in only one una.
Problem \#1: 1 is not a product of primes
Solution: Ignore 1.
(O_{r}, view 1 as the "empty product")

Problem \#2: Commntutiaity.

$$
\text { Ex: } 140=2 \cdot 2 \cdot 5 \cdot 7=2 \cdot 5 \cdot 2 \cdot 7=7 \cdot 2 \cdot 5 \cdot 2=\ldots
$$

Solution: Write the factors in increasing order.

The (Fundamental Theorem of Arithmetic)
(1) Every $n \in \mathbb{N}$ such that $n \geqslant 2$ is either a prime or a product of primes.
(2) Every $n \in \mathbb{N}$ such that $n \geqslant 2$ can be written uniquely as a product of primes, in the following sense: Suppose that

$$
n=p_{1} p_{2} \cdots p_{r} \quad \text { and } \quad n=q_{1} q_{2} \cdots q_{s} \text {, }
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ and $q_{1}, q_{2}, \ldots, q_{s}$ are all primes such that

$$
p_{1} \leq p_{2} \leq \cdots \leq p_{r} \quad \text { and } \quad q_{1} \leq q_{2} \leq \cdots \leq q_{5} \text {. }
$$

Then $r=s$ and $p_{i}=q_{i}$ for all $1 \leq i \leq r$.

Proof: (1) We proved this last time.
(2) Let $P(n)$ be " n can be written uniquely as a product of primes (with the factors listed in increasing order)."
We will prove $P(n)$ is tue for all $n \geq 2$ by complete induction.

Base Case: $n=2$. One factorization is

$$
2=2 .
$$

Suppose $2=p_{1} p_{2} \cdots p_{r}$ is any other factorization into primes with $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{\text {r }}$ Then, since $2 \leqslant p$ for every prime p, we must have

$$
2=p_{1} p_{2} \cdots p_{r} \geqslant 2^{r}
$$

so $r=1$. Than, $2=p_{1}$, and this factorization is the one we already knew.

Inductive Step: Let $n \in \mathbb{N}, n \geq 2$, and assume $P(2), \ldots, P(n)$ are all true.

We prove $P(n+1)$ by considering two cases.

Case 1: $n+1$ is prime. Then any factorization

$$
n+1=p_{1} p_{2} \cdots p_{r}
$$

into primes p_{i} with $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{1}$ must have $r=1$ and $p_{1}=n+1$.

Why? If $r \geq 2$, then

$$
n+1=a \cdot b
$$

where $a=p_{1} \neq 1$ and $b=p_{2} \cdots p_{r} \neq 1$, contradicting that $n+1$ is prime.

So $P(n+1)$ is true in this case.

Case 2: $n+1$ is composite.
Suppose
$n+1=p_{1} p_{2} \cdots p_{r}$ with $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{r}$ and

$$
n+1=q_{1} q_{2} \cdots q_{r} \text { with } q_{1} \leq q_{2} \leq \cdots \leq q_{s} \text {, }
$$

where all p_{i} and q_{j} are prime.
Since $n+1$ is not prime, $r \geqslant 2$ and $s \geqslant 2$.
Without loss of generality, we may assume

$$
p_{1} \leqslant q_{1}
$$

Now, p_{1} divides $n+1=q_{1} \cdots q_{s}$, so by the

Applies because p_{1} is prime $S_{a y} p_{1} l q_{k}$.

Since q_{k} is prime, its only positive divisors are 1 and itself.
Since $p_{1} \neq 1$, it must be that $p_{1}=q_{k}$.
Now, $\quad p_{1} \leqslant q_{1} \leqslant q_{k}=p_{1}$,
so we must have equality throughout, and $p_{1}=q_{1}$.

Therefore,

$$
\begin{aligned}
n+1=p_{1}\left(p_{2} \cdots p_{r}\right) & =q_{1}\left(q_{2} \cdots q_{s}\right) \\
& =p_{1}\left(q_{2} \cdots q_{s}\right) .
\end{aligned}
$$

Cancelling $p_{1} \neq 0$, we get

$$
p_{2} \cdots p_{r}=q_{2} \cdots q_{s} .
$$

Call this number l. Then $2 \leq l \leq n$ (why? $r \geq 2$ and $n+1=p_{1} l$), so $P(l)$ is true.

Since (k) gives two factorizations of l into prime factors listed in increasing order, $P(l)$ implies

$$
\text { - } r-1=s-1
$$

and

- $p_{i}=q_{i}$ for all $2 \leq i \leq r$.

It follows that $r=s$ and $p_{i}=q_{i}$ for all $1 \leqslant i \leqslant r$, so $P(n+1)$ is true.

