Warm-Up: • Compute $\operatorname{gcd}(936,650)$ using the Euclidean algorithm.

- Find the prime fuctorizations of 936 and 650 .

Fundamental Theorem of Arithmetic
Every integer $n \geqslant 2$ can be factored uniquely as a product of primes.

In practice, finding the prime factorization is HARD.
But the FTA has many "applications" in theoretical math.

As we see from the $W_{\operatorname{arm}}-U_{p}$, we can easily compute $\operatorname{gcd}(a, b)$ if we have prime factorizations for both $a$ and $b$.

Key points: Let $a, b \geqslant 2$ be integers.

- For any prime $p$,
pla $\Leftrightarrow P$ appears in the prime factorization of a
every prime in the prime
- $a \mid b \Leftrightarrow$ factorization of a appears at least as many times in the prime factorization of $b$.
- The prime divisors of $\operatorname{gcd}(a, b)$ are the prime divisors that a and $b$ have in common.
The number of times a prime $p$ appears in the factorization of $\operatorname{gcd}(a, b)$ is the smaller of
the number of times $p$ appears in the futcrization of a
- $\operatorname{gcd}(a, b)=1 \Leftrightarrow a$ and $b$ have no prime divisors in common "a and $b$ are relatively prime"

Let $p_{1}, \ldots, p_{k}$ be the complete list of primes which divide $a$ or divide $b$.

We can urite the prime factorizations as

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

and

$$
b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}},
$$

where $e_{i} \geqslant 0$ and $f_{i} \geqslant 0$ for all $i$.

Then

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{k}^{\min \left(e_{2}, f_{k}\right)}
$$

Also,

$$
\operatorname{Icm}(a, b)=p_{1}^{\max \left(e, f_{1}\right)} p_{2}^{\max \left(e_{2}, f_{2}\right)} \cdots p_{1}^{\max \left(e, f_{1}\right)}
$$

Why? This is the smallest positive integer divisible by both $a$ and $b$.

$$
\text { Ex: } \begin{aligned}
a=96=2^{5} \cdot 3 \cdot 5^{\circ}, \quad b & =180=2^{2} \cdot 3^{2} \cdot 5 \\
\operatorname{gcd}(96,180) & =2^{2} \cdot 3 \quad=12 \\
\operatorname{lcm}(96,180) & =2^{5} \cdot 3^{2} \cdot 5
\end{aligned}=144080 .
$$

The: Let $a, b \in \mathbb{N}$. Then

$$
\operatorname{gcd}(a, b) \cdot \operatorname{Icm}(a, b)=a b
$$

Equivalently, $\operatorname{Icm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$ and $\operatorname{gcd}(a, b)=\frac{a b}{\operatorname{lcm}(a, b)}$.

Proof: Write

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \text { and } b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}
$$

as above.
Since $\min \left(e_{i}, f_{i}\right)+\max \left(e_{i}, f_{i}\right)=e_{i}+f_{i}$, we have

$$
\begin{aligned}
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) & =p_{1}^{e_{1}+f_{1}} p_{2}^{e_{2}+f_{2}} \ldots p_{k}^{e_{k}+f_{k}} \\
& =a b .
\end{aligned}
$$

Thu: Let $a, b, c \in \mathbb{Z}$.
(1) If $\operatorname{gcd}(b, c)=1$, then $\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c)$.
(2) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
(3) Let $d=\operatorname{gcd}(a, b)$. Then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.

Proof: (1) Let $b=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ and $c=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{s}^{f_{s}}$ be the unique prime factorizations of $b$ and $c$, where $p_{1}, \ldots, p_{r}$ are the distinct prime divisors of $b$ and $q_{1}, \ldots, q_{s}$ are the distinct prime divisors of $c$, and the exponents $e_{i}$ and $f_{j}$ are positive integers.

Since $\operatorname{gcd}(b, c)=1, \quad p_{i} \neq q_{j}$ for all $i$ and $j$.

Now, the unique prime factorization of a will look like

$$
a=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{r}^{x_{r}} \cdot q_{1}^{y_{1}} q_{2}^{y_{2}} \cdots q_{s}^{y_{s}} \cdot \text { (other primes), }
$$

where the exponents $x_{i}, y_{j}$ are non-negotive (some might be 0 ).
Thus, $\quad \operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, x_{1}\right)} p_{2}^{\min \left(e_{2}, x_{2}\right)} \ldots p_{r}^{\min \left(e_{r}, x_{r}\right)}$,

$$
\operatorname{gcd}(a, c)=q_{1}^{\min \left(f_{1}, y_{0}\right)} q_{2}^{\left.\min \left(f_{2}, y_{2}\right) \ldots q_{s}^{\min \left(f_{s}, y_{s}\right)},, ~\right), ~}
$$

and

$$
\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c) .
$$

(2) + (3) HW 16 .

