$$\frac{\text{Warm} - \text{Up}}{\text{Let}}$$
• Let $a, b, c \in \mathbb{Z}$. Prove that if $gcd(b, c) = 1$,
then $gcd(a, bc) = gcd(a, b) \cdot gcd(a, c)$.
• Compute $gcd(a, bc)$ for (see Lecture 25 notes)
 $a = 18$, $b = 20$, $c = 21$
 $a = 18$, $b = 10$, $c = 42$

Another application: Proving a root is irrational.
of FTA
Ex:
$$\sqrt{6} \notin \mathbb{Q}$$
.

Proof: Assume, to get a contradiction, that

$$\overline{J6} \in \mathbb{Q}$$
. Then $\overline{J6} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$
with $b \neq 0$.
Thus, $6 = \frac{a^2}{b^2}$, or $a^2 = 6b^2$.
Now, look at the prime factorizations
on each side. (Note: $6b^2 \ge 6 \ge 2$)

In the factorization of a², every prime must occur an even number of times.

In the function of 66², the primes 2 and 3 each occur an odd number of times, contradicting uniqueness of prime factorization.

Alternate proof: Add the assumption that
$$\frac{a}{b}$$
 is
in lonest terms. That is, a and b
are relatively prime.
Then any prime dividing b also divides a^2 ,
hence divides a. (trhy?)
But gcd(a, b) = 1, so this is only
possible if b=1.
Thus, $Jb = \frac{a}{1} = a \in \mathbb{Z}$, a contradiction.

"<u>Def</u>": A <u>set</u> is an unordered collection of objects, called <u>elements</u> of the set.

Actual definition is a list of axioms

One may to describe a set: list its elements inside braces.

Ex: {1,2,3}, {red, blue}, {@, \$, ★, □} are sets

Important notes: • The elements in a set are unordered. So £1,2,33, £1,3,23, {2,1,33, {2,3,13, {3,1,23, {3,2,13}} are six mays of writing the same set.

If A is a set, then $x \in A$ means x is an element of A. $x \notin A$ means x is not an element of A.

$$E_{X}: A = \begin{cases} \{1, 2\}, \{red, blue\}, \{s\}\} \text{ is a set with} \\ \text{Haree elements, two of which are sets} \\ \text{Hemselves.} \\ \{1, 2\} \in A \\ I \notin A \end{cases}$$