Ex: Let neW. A set with n elements has exactly 2ⁿ subsets. Why?

Def: Let A and B be sets. We say
A is a proper subset of B,
witten
$$A \subseteq B$$
, if $A \subseteq B$ and $A = B$.

So A ⊊B means (∀x)(x (A ⇒ x (B) ^ (∃y)(y (B ^ y (A)).

Warning: E vs. E

Ex:
$$| \in \{1, 2, 3\}$$
 is the
 $\{1\} \in \{1, 2, 3\}$ is the
 $\{1\} \in \{1, 2, 3\}$ is the
 $\{1\} \in \{1, 2, 3\}$ is the
 $| \in \{1, 2, 3\}$ makes no sense

 $E_{X}: \emptyset \subseteq \emptyset \quad (because \quad \emptyset \in A \quad for every set A)$ but $\emptyset \notin \emptyset \quad (because \quad x \in \emptyset \quad is \quad always \quad filse)$ $E_{X}: \quad Consider \quad \{\emptyset\}, \quad the set \quad whose \quad only element \quad is \quad \emptyset.$ Then $\emptyset \in \{\emptyset\} \quad and \quad \emptyset \subseteq \{\emptyset\}.$

<u>Thm</u>: I) For all sets A, $A \subseteq A$. [Reflexive]

(2) For all sets A and B, if A = B and B = A, then A = B. [Antisymmetric]
(3) For all sets A, B, and C, if A = B and B = C, then A = C. [Transitive]

Note: < and divisibility have these same 3 properties!</p>

Proof: 1) we proved last time.
(2) is our definition of set equality.
(3): Suppose
$$A \in B$$
 and $B \in C$. This means
 $x \in A \Rightarrow x \in B$ is the for every x
and
 $x \in B \Rightarrow x \in C$ is the for every x .
To prove $A \in C$, suppose $x \in A$ for some x .
Then $x \in B$ because $A \in B$. Thus, $x \in C$
because $B \in C$.
Therefore, $x \in A \Rightarrow x \in C$ for every x , so
 $A \in C$.

Def: Let A and B be sets.

The union of A and B is the set AUB = {x | xeA or xeB}.
The intersection of A and B is the set A ∩ B = {x | xeA and xeB}.
The relative complement of B in A is the set A ∩ B = {x | xeA and xeB}.
The relative complement of B in A is the set A ∩ B = {x | xeA and xeB}.

Pictures:

Ex: Let
$$E = \{n \in IV \mid n \text{ is even}\}$$

 $= \{2, 4, 6, 8, ...\}$
and
 $P = \{p \in M \mid p \text{ is prime}\}$
 $= \{2, 3, 5, 7, 11, ...\}$
• $E \cup P = \{n \in IN \mid n \text{ is even or prime}\}$
 $= \{2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 17, ...\}$
• $E \cap P = \{n \in IV \mid n \text{ is even and prime}\}$
 $= \{2\}$
• $E \setminus P = \{4, 6, 8, 10, ...\}$
• $P \setminus E = \{3, 5, 7, 11, ...\}$
• $N \setminus E = \{n \in IN \mid n \text{ is odd}\}$
 $= \{1, 3, 5, 7, ...\}$
• $E \setminus N = \emptyset$