Warm-U : List all subsets of

- $\{1\}$
- $\{1,2\}$
- $\{1,2,3\}$

Ex: Let $n \in \mathbb{N}$. A set with n elements has exactly 2^{n} subsets. Why?

Def: Let A and B be sets. We say A is a proper subset of B, written $A \subseteq B$, if $A \subseteq B$ and $A=B$.

So $A \subseteq B$ means

$$
(\forall x)(x \in A \Rightarrow x \in B) \wedge(\exists y)(y \in B \wedge y \notin A) \text {. }
$$

Warning: Some people use C instead of \subseteq. c does not mean proper subset.

Warning: \in vs. \in
Ex: $\quad \mid \in\{1,2,3\}$ is true
$\{1\} \in\{1,2,3\}$ is false
$\{1\} \subseteq\{1,2,3\}$ is time
$1 \subseteq\{1,2,3\}$ males no sense
Ex: $\varnothing \leqslant \varnothing$ (because $\varnothing \leqslant A$ for every set A) but $\varnothing \notin \varnothing$ (because $x \in \varnothing$ is always false)

Ex: Consider $\{\varnothing\}$, the set whore only element is \varnothing. Then $\varnothing \in\{\phi\}$ and $\varnothing \subseteq\{\varnothing\}$.

The: (1) For all sets $A, A \subseteq A$. [Reflexive]
(2) For all sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$. [Antisymmetric]
(3) For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. [Transitive]

Note: S and divisibility have these same 3 properties!

Proof: (1) we proved last time.
(2) is our definition of set equality.
(3): Suppose $A \subseteq B$ and $B \subseteq C$. This means $x \in A \Rightarrow x \in B$ is the for every x and $x \in B \Rightarrow x \in C$ is tine for ever x.

To prove $A \subseteq C$, suppose $x \in A$ for some x. Then $x \in B$ because $A \leqslant B$. Thus, $x \in C$ because $B \subseteq C$.

Therefore, $x \in A \Rightarrow x \in C$ for every x, so $A \subseteq C$.

Algebra of Sets
Def: Let A and B be sets.
(1) The union of A and B is the set

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} \text {. }
$$

(2) The intersection of A and B is the set

$$
A \cap B=\{x \mid \quad x \in A \text { and } x \in B\} \text {. }
$$

(3) The relative complement of B in A is the set

$$
A \backslash B=\{x \mid x \in A \text { and } x \notin B\} \text {. }
$$

Pictures:

$A \cup B$

$A \cap B$

ArB

Ex: Let $E=\{n \in \mathbb{N} \mid n$ is ever $\}$

$$
=\{2,4,6,8, \ldots\}
$$

and

$$
\begin{aligned}
P & =\{p \in \mathbb{N} \mid p \text { is prime }\} \\
& =\{2,3,5,7,11, \ldots\}
\end{aligned}
$$

- $E \cup P=\{n \in \mathbb{N} \mid n$ is even or prime $\}$

$$
=\{2,3,4,5,6,7,8,10,11,12,13,17, \ldots\}
$$

- $E \cap P=\{n \in \mathbb{N} \mid n$ is even and prime $\}$

$$
=\{2\}
$$

- $E \backslash P=\{4,6,8,10, \ldots\}$
- $P \backslash E=\{3,5,7,11, \ldots\}$
- $\mathbb{N} \backslash E=\{n \in \mathbb{N} \mid n$ is old $\}$

$$
=\{1,3,5,7, \ldots\}
$$

- $E \backslash \mathbb{N}=\varnothing$

