$\frac{Warm - Up}{P}$: Let A and B be sets. Show that A \leq A \cup B and B \leq A \cup B.

HW 18: You showed ANBEA and ANBEB.

$$\frac{\text{Recall}: x \in A \cup B}{x \in A \cap B} \iff (x \in A) \lor (x \in B)}$$

$$\frac{P_{roof}:(a) \times \mathscr{A} \cup B \iff \neg (x \in A \cup B)}{\iff \neg [(x \in A) \lor (x \in B)]}$$
$$\iff \neg (x \in A) \lor (x \in B) \qquad DeMorgan$$
$$\iff [x \notin A) \land (x \notin B).$$
$$(b) is similar, using the other DeMorgan Law.$$

$$\frac{\text{Thm} (\text{DeMorgan Laws for sets}):}{\text{Let A, B, and S be sets. Then}}$$
(i) $S \setminus (A \cup B) = (S \setminus A) \cap (S \setminus B).$
(ii) $S \setminus (A \cap B) = (S \setminus A) \cup (S \setminus B).$

(2): Let
$$x \in (S \setminus A) \cap (S \setminus B)$$
. Then $x \in S \setminus A$
and $x \in S \setminus B$. So $x \in S$ and $x \notin A$,
and $x \in S$ and $x \notin B$. Since $x \notin A$ and
 $x \notin B$, we have $x \notin A \cup B$ by the Lemma.
Thus, because $x \in S$, we have $x \in S \setminus (A \cup B)$.

Then (Associativity of U and
$$\cap$$
):
Let A, B, and C be sets. Then
(i) (A U B) UC = A U (BUC)
(ii) (A \cap B) \cap C = A \cap (B \cap C).

Sets of sets

Notation: We'll often use a script letter to denote a set of sets - i.e. a set, all of whose elements are sets.

Def: Let A be a set of sets. Then

•
$$\bigcup_{A \in A} A = \{ x \mid (\exists A \in A) (x \in A) \}$$

•
$$\bigcap_{A \in A} A = \begin{cases} x \mid (\forall A \in A)(x \in A) \end{cases}$$

Ex: Let
$$A = \{\{1,2\}, \{2,3\}, \{2,5,6\}\}$$
. Then
 $\bigcup A = \{\{1,2\}, \cup \{2,3\}, \cup \{2,5,6\}\} = \{1,2,3,5,6\}$
and
 $\bigcap A = \{\{1,2\}, \cap \{2,3\}, \cap \{2,5,6\}\} = \{2\}$.

Ex: Let
$$A_n = \{k \in \mathbb{N} \mid k \ge n\}$$

= $\{n, n+1, n+2, ...\}$

So
$$A_1 = \{1, 2, 3, ..., \} = IN$$

 $A_2 = \{2, 3, 4, ..., \}$
 $A_3 = \{3, 4, 5, ..., \}$

$$\bigcup_{A \in A} A = \bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup A_3 \cup \dots = N.$$

Proof: Let
$$x \in \bigcup_{n=1}^{\infty} A_n$$
. Then $x \in A_n$ for some n .
But $A_n \in N$, so $x \in N$. Thus, $\bigcup_{i=1}^{\infty} A_i \in N$.
On the other hand, let $x \in N$. Since $N = A_1$, $x \in \bigcup_{n=1}^{\infty} A_n$. Thus, $N \subseteq \bigcup_{n=1}^{\infty} A_n$.

Also,

$$\bigwedge_{A \in \mathcal{A}} A = \bigcap_{n=1}^{\infty} A_n = A_1 \cap A_2 \cap A_3 \cap \dots = \emptyset$$
.
Proof: Suppose $x \in \bigcap_{n=1}^{\infty} A_n$. Then $x \in A_n$ for
every n . In particular, $x \in A_1 = N$.
But then $x \notin A_{x+1}$, which contradicts
 $x \in A_n$ for all $n \in N$.