$$\frac{Warm-Up}{P}: For which red numbers x are the following sentences true?$$
(a) $(x > 2) \land (x < 5)$
(b) $\neg (x > 2)$
(c) $\neg [(x > 2) \land (x < 5)]$

How do the operations -, 1, V interact with one another? Warm-up part (c) gives one example.

$$\begin{array}{c|c} \underline{P_{Poof} of (a)} \\ \hline By truth tole \\ \hline \end{array}$$

$$\begin{array}{c|c} P & Q & PAQ & \neg (PAQ) & \neg P & \neg Q & \neg PV & \neg Q \\ \hline T & T & T & F & F & F \\ \hline T & T & F & F & F & F \\ \hline T & F & F & T & F & T \\ \hline F & F & F & T & F & T \\ \hline F & F & F & T & T & F \\ \hline F & F & F & T & T & T \\ \hline \end{array}$$

So we see ¬(PAQ) = ¬PV ¬Q.

In words:

We wish to show $\neg(PAQ)$ always has the same truth value as $\neg PV \neg Q$.

First, suppose $\neg(PAQ)$ is true. Then PAQis false, so at least one of P or Q is false.

But this means at least one of $\neg P$ or $\neg Q$ is true, so $\neg P \lor \neg Q$ is true.

Next, suppose -(PAQ) is filse. Then PAQ is true, so both P and Q are true. Now, both -P and -Q will be false, meaning -PV-Q is false as well.

(b) HW 1

(or both).

In either case, PVQ is the and PVR is the, so (PVQ) Λ (PVR) is the.

As a trath table:

P	Q	R	QAR	PV(QAR)	PvQ	Pvr	(PVQ)1(PVR)
T	T	Τ	Т	T	F	Ŧ	1
Т	Т	F	F	Т	Т	T	T
Т	۴	T	ш	Т	F	T	
T	TI	F	٦	Т	[-	F	T
F	\vdash	Т	\vdash	T	F	T	Т
F	Т	F	F	F	Т	ł	F
F	Ч	T	F	F	F	-	F
F	F	F	F	F	۱L	F	F