Warm U_P: Let
$$
A = \{ [0, n] | n \in \mathbb{N} \}
$$
.
Find $\bigcup_{A \in A} A$ and $\bigcap_{A \in A} A$.

Ex: Let
$$
A_n = [\frac{1}{n}, 2]
$$
 for each $n \in \mathbb{N}$.
\n $A_1 = [1, 2]$ $\frac{1}{6} = \frac{1}{2}$
\n $A_2 = [\frac{1}{2}, 2]$ $\frac{1}{6} = \frac{1}{2}$
\n $A_3 = [\frac{1}{3}, 2]$ $\frac{1}{6} = \frac{1}{2}$
\nThen $\bigcap_{i=1}^{\infty} A_n = [1, 2]$.
\n**Part:** Left to yon.

And
$$
\bigcup_{i=1}^{n} A_{n} = (0,2]
$$
.
\nProof: Each $A_{n} \in (0,2]$, so $\bigcup_{i=1}^{n} A_{n} \in (0,2]$
\nNow, let $x \in (0,2]$.
\nBy the Archimedean, Property (Bonus
\nProblem 45), there exists meIN
\nsuch that $\frac{1}{m} < x$.
\nThus, $x \in A_{m} = [\frac{1}{m},2]$, and so $x \in \bigcup_{i=1}^{m} A_{n}$.
\nThat is, $(0,2] \in \bigcup_{i=1}^{m} A_{n}$.

D

$$
Ex: Similary, if Bn = (-\frac{1}{n}, 2], then
$$

\n
$$
\bigcup_{n=1}^{\infty} B_{n} = (-1, 2] \text{ and } \bigcap_{n=1}^{\infty} B_{n} = [0, 2].
$$

Thm: Let A be a non-empty set of sets. Let A_s Ed. Then $A \subseteq A_{o} \subseteq \bigcup_{\emptyset} A$. Proof : \bigcirc Let $x \in \bigcap_{A \in \mathcal{A}} A$. Then for all $A \in \mathcal{A}$, $x \in A$. In particular, $x \in A_0$. Thus, $\bigcap_{A \in A} A \subseteq A_0$. \bigcirc Let $x \in A_0$. Then there exists some $A \in \mathcal{A}$ Such that $x \in A$, because we could take $A = A_0$. This means $x \in U$ A. Therefore, $A_{\circ} \subseteq U$ A
A \leq

Thm (Generalized DeMorgan Laws for sets):
Let S be a set and let A be a set of sets.
Then
(i) S
$$
\bigcup_{A \in A} A
$$
 = $\bigcap_{A \in A} (S \setminus A)$
(ii) S $\bigcap_{A \in A} A$ = $\bigcup_{A \in A} (S \setminus A)$.

Thm (Generalized Distributive Laws for sets): Let S be a set and let A be a set of sets. Then i) S n $\left(\bigcup_{A \in A} A\right) = \bigcup_{A \in A}$ (SNA) (ii) $S \cup (\bigcap_{A \in A} A) = \bigcap_{A \in A} (S \cup A)$.

The Power Set
\nDef: Let A be a set. The power set of A,
\ndended
$$
P(A)
$$
 is the set of all subsets of
\n A .
\n $P(A) = \{S \mid S \in A\}.$

 E_x : $A = \{1,2\}$. Then $P(A) = \{4\}$, $\{13, 23, 21, 23\}$.

If A has n elements, then $P(A)$ has 2ⁿ elements.

CartesianProducts Def An orderedpair is ^a list of two objects in order If ^a and b are objects then ^a b denotes the ordered pair with first entry ^a and second entry 6 What do we mean by in order

 $fundamental Property: (a,b) = (c,d)$ it and only it</u> $a = c$ and $b = d$

$$
\underline{Ex}: \cdot \underline{T}f \quad a \neq b, \text{ then } (a, b) \neq (b, a).
$$
\n
$$
\cdot \text{For any } a, \quad (a, a) \text{ is a perfectly fine ordered pair.}
$$
\n
$$
\underline{Compare with sets:}
$$
\n
$$
\cdot \{a, b\} = \{b, a\}
$$
\n
$$
\cdot \{a, a\} = \{a\}
$$

 \overline{Aside} . I here is an "implementation" of ordered pairs as sets. To do this, define $(a, b) = \{a_3, a_4, b_3\}$

Then you can prove that $(a, b) = (c, d)$ are and b=d.