$$\frac{\text{Warm-Up}: \text{Let } A = \{[0,n] \mid n \in \mathbb{N}\}.}{\{x \in \mathbb{R} \mid 0 \le x \le n\}}$$

Find UA and
$$\bigcap_{A \in \mathbb{A}} A.$$

Ex: Let
$$A_n = [\frac{1}{n}, 2]$$
 for each $n \in \mathbb{N}$.
 $A_1 = [1, 2]$
 $A_2 = [\frac{1}{2}, 2]$
 $A_3 = [\frac{1}{3}, 2]$
Then $\bigcap_{i=1}^{n} A_n = [1, 2]$.
Proof: Left to you.

And
$$\bigcup_{i=1}^{n} A_n = (0, 2].$$

Proof: Each $A_n \in (0, 2]$, so $\bigcup_{n=1}^{n} A_n \in (0, 2]$
Now, let $x \in (0, 2].$
By the Archimedean Property (Bonus
Problem #5), there exists $m \in \mathbb{N}$
such that $\frac{1}{m} < x.$
Thus, $x \in A_m = [\frac{1}{m}, 2]$, and so $x \in \bigcup_{n=1}^{n} A_n.$
That is, $(0, 2] \in \bigcup_{n=1}^{n} A_n.$

Ex: Similarly, if
$$B_n = (-1, 2]$$
, then
 $\bigcup_{n=1}^{\infty} B_n = (-1, 2]$ and $\bigcap_{n=1}^{\infty} B_n = [0, 2]$.

Thum: Let \mathcal{A} be a non-empty set of sets. Let $A_0 \in \mathcal{A}$. Then $\bigcap_{A \in \mathcal{A}} \mathcal{A}_0 \subseteq \mathcal{U} A$. $\underbrace{Proof}: \mathbb{O}$ Let $x \in \bigcap_{A \in \mathcal{A}} A$. Then for all $A \in \mathcal{A}_0$, $x \in A$. In particular, $x \in A_0$. Thus, $\bigcap_{A \in \mathcal{A}} A \in A_0$. \mathbb{O} Let $x \in A_0$. Then there exists some $A \in \mathcal{A}$ such that $x \in A_0$. Then there exists some $A \in \mathcal{A}$. This means $x \in \mathcal{U} A$. Therefore, $A_0 \in \mathcal{U} A$. $\underbrace{A \in \mathcal{U} A}_{A \in \mathcal{A}}$.

Thm (Generalized DeMorgan Laws for sets):
Let S be a set and let A be a set of sets.
Then
(i)
$$S \setminus (\bigcup_{A \in A} A) = \bigcap_{A \in A} (S \setminus A)$$

(ii) $S \setminus (\bigcap_{A \in A} A) = \bigcup_{A \in A} (S \setminus A)$.

 $\frac{\text{Thm}}{\text{Let}} \left(\begin{array}{c} \text{Generalized} \\ \text{Distributive} \\ \text{Let} \\ \text{S} \\ \text{be} \\ \text{a} \\ \text{set} \\ \text{and} \\ \text{let} \\ \text{A} \\ \text{be} \\ \text{a} \\ \text{set} \\ \text{c} \\ \text{c} \\ \text{set} \\ \text{c} \\ \text{$

The Power Set

$$\underline{Def}$$
: Let A be a set. The power set of A,
denoted $P(A)$ is the set of all subsets of
A.
 $P(A) = \xi S \mid S \in A \xi.$

<u>Ex</u>: $A = \{1,2\}$. Then $P(A) = \{ \emptyset, \{1\}, \{2\}, \{1,2\} \}$.

If A has a elements, then P(A) has 2° elements.

<u>Fundamental Property</u>: (a,b) = (c,d) if and only if a=c and b=d.

Ex: If
$$a \neq b$$
, then $(a,b) \neq (b,a)$.
• For any a , (a,a) is a perfectly fine ordered pair.
Compare with sets:
• $\{a,b\} = \{b,a\}$
• $\{a,a\} = \{a\}$

<u>Aside</u>: There is an "implementation" of ordered pairs as sets. To do this, <u>define</u> $(a, b) = \{\{a\}, \{a, b\}\}\}.$

Then you can prove that $(a,b) = (c,d) \in a = c$ and b = d.