$$Cartesian Products$$

$$Def: Let A and B be sets. The Cartesian
product of A and B is the set
$$A \times B = \{(a,b) \mid a \in A, b \in B\}.$$

$$E_X: Let A = \{(a,b), c\} \text{ and } B = \{(2,4)\}. Then
$$A \times B = \{(a,2), (a,4), (b,2), (b,4), (c,2), (c,4)\}.$$
We unite $A^2 = A \times A.$

$$E_X: \mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) \mid x \in \mathbb{R} \text{ and } y \in \mathbb{R}^2\}$$
is the usual Cartesian plane.
$$E_X: \mathbb{N} \times \mathbb{Z} = \{(m,n) \mid m \in \mathbb{N}, n \in \mathbb{Z}\}.$$

$$E_X: \mathbb{N} \times \mathbb{Z} = \{(m,n) \mid m \in \mathbb{N}, n \in \mathbb{Z}\}.$$
Note that $\mathbb{N} \times \mathbb{Z} \in \mathbb{Z}^2 \in \mathbb{R}^2.$

$$E_X: \mathbb{N} \times \mathbb{Z} = \{(m,n) \mid m \in \mathbb{Z}, n \in \mathbb{Z}\}.$$$$$$

 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •

For sets
$$A, B, C$$
, we can similarly define
 $A * B * C = \{(a, b, c) \mid a \in A, b \in B, c \in C\}$.
Tordered triples

$$E_{X}: \mathbb{R}^{3} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}.$$

$$\mathbb{R}^{n} = \mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R} = \{(x, y, z_{2}, \dots, x_{n}) \mid e_{n}c_{n}h_{n} \times \dots \times \mathbb{R}\}.$$

Functions

- "Def": Let A and B be sets. A function f:A→B is a rule which associates to each a eA an element f(a) e B.
 - A is the domain of f, written A = Dom(f). (the set of all valid inputs) We might say f is a <u>function on A</u>.
 - B is the target or <u>codomain</u> of f. (a set containing all possible outputs)
 - For $a \in A$, f(a) is the value of f at a. [f is the function, f(a) is an element of B]
 - The word map is a synonym for function.

Note that to define a function, ne must specify both the domain and the target.

Ex: Let
$$A = \{a, b, c, d\}$$
. Define $f: A \rightarrow Z$ by
 $f(a) = 2$, $f(b) = 3$, $f(c) = 1$, $f(d) = 1$.
When the domain is finite, like
it is here, we can represent the
function as a tuble.
 $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = x^2$
 $g: \mathbb{R} \rightarrow [0, \infty)$
 $h: \mathbb{R} \rightarrow [-2, \infty)$
 $h: \mathbb{R} \rightarrow [-2, \infty)$
 $h: [1, 2] \rightarrow [1, 4]$
 $g: U(x) = x^2$
 $g: [1, 2] \rightarrow \mathbb{R}$
 $h: [1, 2] \rightarrow [1, 4]$
 $f(x) = x^2$
 $f(x) =$

Ex: Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be given by $f(x) = x^2$.
Then $\operatorname{Rng}(f) = [0, \infty)$.
Proof: (=) Let $y \in \operatorname{Rng}(f)$. Then $y \in \mathbb{R}$ and $y = f(x)$
for some $x \in \mathbb{R}$. Thus $y = x^2 \ge 0$,
So $y \in [0, \infty)$.
(=) Let $y \in [0, \infty)$. Then $y \ge 0$, so $Jy \in \mathbb{R}$.
Set $x \in Jy$. We have
 $f(x) = x^2 = (Jy)^2 = y$,
which shows that $y \in [0, \infty)$.