Warm-Up: Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}$ be given by

$$
\begin{gathered}
f(m, n)=m-n . \\
\text { eeg. } f(1,3)=-2, \quad f(3,1)=2 .
\end{gathered}
$$

Show that $R_{n g}(f)=\mathbb{Z}$.

Ex: Let S be any set. Define a function

$$
i d_{s}: S \rightarrow S
$$

by id $(x)=x$ for all $x \in S$.
This is called the identity function on S.

Graphs
Ex: For $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}-2$, the graph of f is $f(x)=x^{3}-2$,

what is this? It's

$$
\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \quad y=x^{3}-2\right\} .
$$

Def: Let $f: A \rightarrow B$ be a function. The graph of f is

$$
G_{\text {mph }}(f)=\{(x, y) \in A \times B \mid \quad y=f(x)\} .
$$

Observe: For each $x \in A$, there is a unique $y \in B$ such that $(x, y) \in \operatorname{Graph}(f)$, namely $y=f(x)$. "vertical line test"

Def: Let A and B be sets. A function $f: A \rightarrow B$ is a subset

$$
\operatorname{Graph}(f) \subseteq A \times B
$$

with the property that for all $x \in A$, there exists a unique $y \in B$ such that $(x, y) \in \operatorname{Graph}(f)$.
If $(x, y) \in \operatorname{Graph}(f)$, unite $f(x)=y$.

Note: - You don't have to use this definition. But it's more concorte than defining a function as a "rule".

- We cari't always draw $\operatorname{Graph}(f)$.

$$
\text { - } \operatorname{Rng}(f)=\{y \in B \mid(x, y) \in \operatorname{Graph}(f)\} \text {. }
$$

