Function Composition

Def: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. The composition of
 g with f is the function
 gof: $A \rightarrow C$ given by $(g \circ f)(a) = g(f(a))$ "g after f"

for all $a \in A$.

Ex:
$$f: \mathbb{R} \to \mathbb{R}$$
 given by $f(x) = 2^x$
 $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = x^2$.

Then
$$(g \circ f)(x) = (2^x)^2 = 2^{2x} = 4^x$$

and $(f \circ g)(x) = 2^{(x^2)}$

$$g \circ f \neq f \circ g$$
, since $(g \circ f)(1) = 4$
 $(f \circ g)(1) = 2$

Order matters!

Note: Read compositions from right to left.

Sometimes, got is defined but fog
is not

Picture: A B 9 C

Thm: Let f:A >B, q:B > C, and h:C >D be functions. Then

 $(h \circ d) \circ t = h \circ (d \circ t)$

Proof idea: Both are given by $x \mapsto h(g(f(x)))$.

Surjections

Def: Let $f:A \rightarrow B$ be a function. We say f is a <u>surjection</u> if for all $y \in B$, there exists $x \in A$ such that f(x) = y.

Also say: f is <u>surjective</u>, f is <u>onto</u>.

Equivalently: f: A -B is surjective Rng(f) = B

Ex: Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3$. Then f is a surjection.

Proof: Let $y \in \mathbb{R}$. Set $x = 3y \in \mathbb{R}$. Then $f(3y) = (3y)^3 = y.$

Ex: Let g: IR > IR be given by g(x) = x².
Then g is not surjective.

Proof: Consider - | ER. Then for all $x \in \mathbb{R}$, $g(x) = x^2 \neq -1$.

Note: f Surjective (YyeB)(3xeA)(f(x)=y)

f not surjective (YeB)(VxeA)(f(x)=y).

Ex: However, h: $R \rightarrow (0,\infty)$ given by $h(x) = x^2$ is surjective.

Injections

Def: A function $f: A \rightarrow B$ is an injection if for all $x_1, x_2 \in A$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Also say: f is injective, f is one-to-one.

Ex: $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is an injection.

Proof: Let $x_1, x_2 \in \mathbb{R}$ and suppose $x_1^3 = x_2^3$. Then $3\sqrt{x_1^3} = 3\sqrt{x_2^3}$, i.e. $x_1 = x_2$.

Ex: g:
$$\mathbb{R} \to \mathbb{R}$$
 given by $g(x) = x^2$ is not an injection.

Proof: Consider -1,
$$1 \in \mathbb{R}$$
. Then -1 \(\neq 1 \), but $g(-1) = (-1)^2 = 1 = (1)^2 = g(1)$.

Note:
$$f$$
 injective $\iff (\forall x_1, x_2 \in A)[f(x_1) = f(x_2) \implies x_1 = x_2]$
 $\iff (\forall x_1, x_2 \in A)[x_1 \neq x_2 \implies f(x_1) \neq f(x_2)]$