Warm - Up:Which of the following functions are
surjections?Surjections?Which one injections?
$$f: \mathbb{Z} \rightarrow \mathbb{Z}$$
 $g: \mathbb{N} \rightarrow \mathbb{I}\mathbb{N}$ $n \mapsto n+1$ $n \mapsto n+1$ $n \mapsto n+1$ $n \mapsto n+1$

$$\frac{Bijections}{Bijection}$$

$$\frac{Def: A function f: A \rightarrow B \text{ is a bijection } if it is both a surjection and an injection.}$$

$$f \text{ surjective } \iff (\forall y \in B) (\exists x \in A) [f(x) = y]$$

$$f \text{ injective } \iff (\forall x_{i}, x_{2} \in A) [f(x_{1}) = f(x_{2}) \Rightarrow x_{i} = x_{2}]$$

$$\iff (\forall y \in B) (\forall x_{i}, x_{2} \in A) [f(x_{1}) = y \land f(x_{2}) = y]$$

Lemma: Let
$$f:A \rightarrow B$$
 be a function. Then
 f is a bijection if and only if for
eveny $y \in B$, there exists a unique
 $x \in A$ such that $f(x) = y$.

Inverse Functions
A bijection
$$f: A \rightarrow B$$
 gives us a rule for
going back to B from A. Specifically, yeB
can map back to the unique xeA such that
 $f(x) = y$.

Def: Let
$$f:A \rightarrow B$$
 be a bijection. The
inverse function of f is
 $f^{-1}: B \rightarrow A$
defined as follows: For each yeB,
 $f^{-1}(y)$ is the unique element xeA
such that $f(x) = y$.
That is $f^{-1}(y) = x \iff y = f(x)$.
Ex: $f: \mathbb{R} \rightarrow (0, \infty)$ given by $f(x) = e^{x}$
is a bijection.
 $f^{-1}: (0, \infty) \rightarrow \mathbb{R}$ is given by $f^{-1}(y) = \ln(y)$.
 $\ln(y) = x \iff y = e^{x}$
Ex: $g: [0, \infty) \rightarrow [0, \infty)$ is a bijection.
 $x \mapsto x^{2}$
This inverse is $g^{-1}: [0, \infty) \rightarrow [0, \infty)$
 $y \mapsto y^{2}$

Ex: Sin:
$$\mathbb{R} \to \mathbb{R}$$
 is not a bijection,
but $\sin: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [1,1]$ is.
Its inverse is $\sin^{-1}: [-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$
 $\sin^{-1}(\gamma) = x \iff \gamma = \sin(x)$
 $and -\frac{\pi}{2} \le x \in \frac{\pi}{2}$
Thm: Let $f:A \to B$ be a bijection and let
 $f^{-1}: B \to A$ be the inverse. Then
 $and \bigcirc f^{-1}\circ f = id_A : A \to A$
 $\bigcirc f \circ f^{-1} = id_B : B \to B$
This is essentially a rephrasing of the fundamental
identity $f^{-1}(\gamma) = x \iff f(x) = \gamma$.
 $\frac{\operatorname{Proof}: \bigcirc}{\operatorname{Let}} x \in A$. We must show
 $(f^{-1}\circ f)(x) = id_A(x) = x^{-1}$.
Set $\gamma = f(x)$. Then, by definition of f^{-1} ,
 $f^{-1}(\gamma) = x$. But then
 $(f^{-1}\circ f)(x) = f^{-1}(f(x)) = f^{-1}(\gamma) = x$.

(2) Let
$$y \in B$$
 We must show
 $(f \circ f^{-1})(y) = id_B(y) = y.$
Set $x = f^{-1}(y).$ Then $f(x) = y,$ so
 $(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y.$

Cor: Let
$$f:A \rightarrow B$$
 be a bijection. Then its
inverse $f^{-1}:B \rightarrow A$ is also a bijection, and
 $(f^{-1})^{-1} = f$.

Proof: Let $f:A \rightarrow B$ be a bijection.

 $\cdot \frac{f^{-1}}{1} is surjective}$: Let $x \in A$.
We must find yeB so that $f^{-1}(y) = x$.
Set $y = f(x)$. Then, by the theorem,

$$f'(y) = f'(f(x)) = x.$$

•
$$f^{-1}$$
 is injective: Let $y_1, y_2 \in B$ such
that $f^{-1}(y_1) = f^{-1}(y_2)$.
Then
 $f(f^{-1}(y_1)) = f(f^{-1}(y_2))$,
so by the theorem,
 $y_1 = y_2$.

•
$$(\underline{f^{-1}})^{-1} = \underline{f}$$
: By definition, for $x \in A$ and $y \in B$,
 $(\underline{f^{-1}})^{-1}(\underline{x}) = \underline{y} \iff x = \underline{f^{-1}}(\underline{y}) \iff \underline{f}(\underline{x}) = \underline{y}$.
Thus, $(\underline{f^{-1}})^{-1} = \underline{y}$.

The following theorems are proved using similar methods.

Thm: Let
$$f: A \rightarrow B$$
 and $g: B \rightarrow A$ be functions.
If
 $g \circ f = id_A$ and $f \circ g = id_B$,
then f is a bijection and $g = f^{-1}$.

Thm: If
$$f: A \rightarrow B$$
 and $g: B \rightarrow C$ are
bijections, then $g \circ f: A \rightarrow C$ is a
bijection also, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.