$$\frac{Warm - Up}{F} : Prove \quad \text{that the function}$$

$$f: N \longrightarrow N \setminus \{1\}$$

$$x \longmapsto x \neq 1$$
is a bijection.

$$Proof$$
: ① Suppose f: A → B is injective. Then
f: A → Rug(f)
is a bijection. Hence, $|A| = |Rug(f)|$.
But Rug(f) ⊆ B, so $|Rug(f)| \le |B|$ by the
Theorem. Together, is get $|A| \le |B|$.
② Suppose f: A → B is surjective. Since B
is finite, $|B| = n$ for some $n \in IN$, so
we can write
 $B = \xi b_1, b_2, ..., b_n \xi$.
For each $i \in \xi 1, ..., n\xi$, let $a_i \in A$ be such that

$$f(a_i) = b_i$$
.

If
$$i \neq j$$
, then $f(a_i) = b_i \neq b_j = f(a_j)$, so
 $a_i \neq a_j$.
Thus, $|\{a_{a_1,\dots,a_n}\}| = n$. But $\{a_{a_1,\dots,a_n}\} \in A_j$
so $n \leq |A|$. Since $|B| = n$, we have
 $|A| \ge |B|$.

The contrapositive of () is the

Ex: If $a_{1,a_{2},a_{3},a_{4}} \in \mathbb{Z}$, then the difference $a_{i}-a_{j}$ will be divisible by 3 for some $i \neq j$.

We already saw that

$$f: IN \longrightarrow IN \{1\}$$

 $\times \longmapsto \times +1$

is a bijection, so
$$|N| = |N \setminus \{1\}|$$
.

Here's another example:

Ex: Let
$$E = \{n \in IN \mid n \text{ is even}\} = \{2, 4, 6, 8, ...\}$$
.
Then

$$g: N \rightarrow E$$
$$x \mapsto 2x$$

Proof: Let $x_{i_1}, x_2 \in IN$. If $f(x_i) = f(x_2)$, then $2x_i = 2x_2$, so cancelling the 2 gives $x_i = x_2$. Thus, f is injective. Let $y \in E$. Then y = 2k for some $k \in IN$ (My?) Thus, f(k) = 2k = y. This shows that f is surjective.

Thm: Let A be a countably infinite set.
Then any subset
$$B \in A$$
 is countable.