Warm-Up: Can you find a bijection

$$
f: \mathbb{N} \rightarrow \mathbb{Z} ?
$$

Ex: $\mathbb{N} \times \mathbb{N}$ is countably infinite
Key: Write the elements of $\mathbb{N} \times \mathbb{N}$ in a grid

	1	2	3	4	5	
1	$(1,1)$	$(1,2)$	$(2,3)$	$(4,4)$	$(1,5)$	
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	
3	$(3,1)$	$(5,2)$	$(3,3)$	$(3,4)$	$(3,5)$	
4	$(1,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	
\vdots						

Define a bijection $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ by reading along the northeast diagonals in order:

$$
\begin{aligned}
& f(1)=(1,1) \\
& f(2)=(2,1) \\
& f(3)=(1,2) \\
& f(4)=(3,1)
\end{aligned}
$$

Ex: The set $\mathbb{Q}_{>0}=\{q \in \mathbb{Q} \mid q>0\}$ of positive rational numbers is countably infinite.

Key idea: Each $q \in \mathbb{Q}_{>0}$ can be written uniquely as $\quad q=\frac{a}{b}$ where

$$
\cdot a, b \in \mathbb{N}
$$

and

- $\frac{a}{b}$ is in lowest terms $(\operatorname{gcd}(a, b)=1)$

Now, use a grid again, but cross out functions not in lowest terms:

Define a bijection $g: \mathbb{N} \rightarrow \mathbb{Q}_{>0}$ by reading the remaining entries along the northent diagonals.

$$
g(1)=1, g(2)=2, g(3)=\frac{1}{2}, g(4)=3, g(5)=\frac{1}{3}, \ldots
$$

Ex: \mathbb{Q} is countably infinite.
Let $g: \mathbb{N} \rightarrow \mathbb{Q}>0$ be the bijection above. Define a bijection hi $\mathbb{N} \rightarrow \mathbb{Q}$ by

$$
h(n)= \begin{cases}0 & \text { if } n=1 \\ g\left(\frac{n}{2}\right) & \text { if } n \text { is even } \\ -g\left(\frac{n-1}{2}\right) & \text { if } n \text { is odd }\end{cases}
$$

So

$$
\begin{aligned}
& h(1)=0 \\
& h(2)=g(1)=1 \\
& h(3)=-g(1)=-1 \\
& h(4)=g(2)=2 \\
& h(5)=-g(2)=-2
\end{aligned}
$$

Thm: $|\mathbb{R}| \neq|\mathbb{N}| \quad(\mathbb{R}$ is uncountable)

Step 1: If $a, b \in \mathbb{R}$ with $a<b$, then $|(a, b)|=|(0,1)|$.
We must give a bijection between $(0,1)$ and (a, b).

A linear function will work:

$$
\begin{aligned}
f:(0,1) & \longrightarrow(a, b) \\
x & \longrightarrow(b-a) x+a
\end{aligned}
$$

Graph:

Exercise: Check that f is a bijection.

Step 2: $\quad|\mathbb{R}|=|(-1,1)|$
There are many ways. to do this, but nell use the books: Define

$$
\begin{aligned}
\varphi:(-1,1) & \rightarrow \mathbb{R} \\
x & \longmapsto \frac{x}{1-|x|}
\end{aligned}
$$

Graph:

Exercise: Check that φ is a bijection.
(Follows from HW 23.)

Step 3: There is no surjection $\mathbb{N} \rightarrow(0,1)$ (and thus no bijection $\mathbb{N} \rightarrow(0,1)$).

Why is this enough? If $|\mathbb{N}|=|\mathbb{R}|$, then since $|\mathbb{R}|=|(-1,1)|$ and $|(-1,1)|=|(0,1)|$, transitivity gives $||\mathbb{N}|=|(0,1)|$, a contradiction.

To show this, we use Cantor's Diagonal Argument.

Need: - Every real number has an infinite decimal representation.

$$
\text { eg. } \begin{aligned}
\frac{1}{3} & =0.3333333 \cdots \\
\frac{3}{4} & =0.7500000 \cdots \\
\pi-3 & =0.14159265 \cdots
\end{aligned}
$$

- This representation is unique if we don't allow infinite repeating is.

$$
\text { eeg. } \begin{aligned}
\frac{3}{4} & =0.749999999 \ldots \\
& =0.750000000 \ldots
\end{aligned}
$$

Now, let $f: \mathbb{N} \rightarrow(0,1)$ be a function.
Think of this as an infinite list:

$$
\begin{aligned}
& c_{1}=f(1)=0 . x_{11} x_{12} x_{13} x_{14} x_{15} \cdots \\
& c_{2}=f(2)=0 . x_{21} x_{22} x_{23} x_{24} x_{25} \cdots \\
& c_{3}=f(3)=0 . x_{31} x_{32} x_{33} x_{34} x_{35} \cdots \\
& c_{4}=f(4)=0 . x_{11} x_{32} x_{43} x_{44} x_{45} \cdots
\end{aligned}
$$

$x_{n m}=$ m th digit of nth number
Define a number c_{0} by

$$
c_{0}=0 . x_{01} x_{02} x_{03} x_{04} x_{05} \cdots
$$

where

$$
x_{o m}= \begin{cases}1 & \text { if } \quad x_{m m} \neq 1 \\ 2 & \text { if } \quad x_{m m}=1\end{cases}
$$

Then $c_{0} \in(0,1)$, but

$c_{0} \neq c_{1}$	because	$x_{01} \neq x_{11}$
$c_{0} \neq c_{2}$	\cdot	$x_{02} \neq x_{22}$
$c_{0} \neq c_{3}$	$"$	$x_{03} \neq x_{33}$

Thus, $\operatorname{co} \notin R_{n g}(f)$, so f is not surjective.

If time: Cantor's Generalized Diagonal Lemma

A similar argument, shows that we can always find "larger" infinities.

Def: Let A and B be sets.

- We unite $|A| \leq|B|$ if there exists an injection $A \rightarrow B$.
- We write $|A|<|B|$ if $|A| \leq|B|$ and $|A| \neq|B|$.

Note: This is consistent with what we know about finite sets, where $|A|$ and $|B|$ are non-negative integers.

Ex: $|\mathbb{N}|<|\mathbb{R}|$.

Thu (Cantor): Let A be any set. Then

$$
|A|<|P(A)|
$$

Note: We've seen that if A is finite, then $|P(A)|=2^{|A|}>|A|$.

So the interesting (hard) part of this theorem is the case where A is infinite.

Proof: First, consider $\begin{aligned} g: A & \longrightarrow P(A) \\ x & \longmapsto\{x\}\end{aligned}$
$x \longmapsto\{x\}$
This is a bijection, since $\left\{x_{1}\right\}=\left\{x_{2}\right\}$ if and only if $x_{1}=x_{2}$.
Thus $|A| \leq|P(A)|$.
Next, we must show $|A| \neq|P(A)|$.
Consider any function $f: A \rightarrow P(A)$. So for any $x \in A$, he get a subset $f(x) \subseteq A$.

Claim: f is not surjective
(Thus, f cannot be a bijection.)
Consider

$$
S=\{x \in A \quad \mid x \notin f(x)\} \subseteq A .
$$

Suppose that $S \in R_{n g}(f)$. Then $S=f\left(x_{0}\right)$ for some $x_{0} \in A$.

$$
\text { Is } x_{0} \in S \text { or } x_{0} \notin S ?
$$

- If $x_{0} \in S$, then by definition $x_{0} \notin f\left(x_{0}\right)=S$, a contradiction.
- If $x_{0} \notin S=f\left(x_{0}\right)$, then by definition of $S, x_{0} \in S$, a contradiction.

Since both possibilities lend to a contradiction, it must be that $S \notin R_{n g}(f)$. Thus, f is not surjective.

