$$\frac{Warm-Up}{F: IN} \longrightarrow \mathbb{Z} ?$$

$$\frac{E_{x}: IN \times IN}{F: IN} \xrightarrow{\longrightarrow} \mathbb{Z} ?$$

$$\frac{E_{x}: IN \times IN}{F: IN} \text{ is countably infinite}$$

$$\frac{I}{I} \xrightarrow{2} 3 \xrightarrow{4} 5 \xrightarrow{1} 1$$

$$\frac{I}{I} \xrightarrow{1} 1 \xrightarrow{2} 3 \xrightarrow{4} 5 \xrightarrow{1} 1$$

$$\frac{I}{I} \xrightarrow{1} 1 \xrightarrow{1}$$

Define a bijection
$$f: IN \rightarrow IN \times IN$$
 by reading
along the northeast diagonals in order:
 $f(1) = (1, 1)$
 $f(2) = (2, 1)$
 $f(3) = (1, 2)$
 $f(4) = (3, 1)$

Ex: The set
$$Q_{x0} = \{q \in Q \mid q > 0\}$$
 of positive
rational numbers is countably infinite.

Key idea: Each $q \in Q_{x0}$ can be written uniquely
as $q = \frac{2}{\pi}$ where
 $as = \frac{2}{\pi}$ where
 $a, b \in IN$
and $\frac{2}{\pi}$ is in lowest terms $(qcl(c,b) = 1)$

Now, use a grid again, but cross out functions
not in larest terms:

 $\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}$

Define a bijection $g: IN \rightarrow Q_{>0}$ by reading the remaining entries along the northeast diagonals. $g(1)=1, g(2)=2, g(3)=\frac{1}{2}, g(4)=3, g(5)=\frac{1}{3}, \dots$

So

$$h(1) = 0$$

$$h(2) = g(1) = 1$$

$$h(3) = -g(1) = -1$$

$$h(4) = g(2) = 2$$

$$h(5) = -g(2) = -2$$

Thm: IR = IN (R :s uncountable)

Step 1: If a, b \in R with a < b, then
$$|(a,b)| = |(0,1)|$$
.
We must give a bijection between $(0,1)$ and
 (a,b) .
A linear function will work:
 $f: (0,1) \rightarrow (a,b)$
 $x \rightarrow (b-a)x + a$
Graph:
 $\int_{0}^{1} \int_{0}^{1} \int_{$

Exercise: Check that op is a bijection. (Follows from HW 23.)

Step 3: There is no surjection
$$N \rightarrow (0,1)$$

(and thus no bijection $N \rightarrow (0,1)$).

Why is this enough? If
$$|N| = |R|$$
, then since
 $|R| = |(-1,1)|$ and $|(-1,1)| = |(0,1)|$, transitivity
gives $|N| = |(0,1)|$, a contradiction.

To show this, we use Cantor's Diagonal
Argument.
Need: Every real number has an infinite
decimal representation.
eg:
$$\frac{1}{3} = 0.3333333 \cdots$$

 $\frac{2}{4} = 0.7500000 \cdots$
 $\pi - 3 = 0.14159265 \cdots$
This representation is unique if we
don't allow infinite repeating 9s.
e.g: $\frac{3}{4} = 0.7499999999\cdots$
 $= 0.750000000\cdots$

Now, let $f: IN \rightarrow (0, 1)$ be a function. Think of this as an infinite list:

$$C_{1} = f(1) = O. \times_{11} \times_{12} \times_{13} \times_{14} \times_{15} \cdots$$

$$C_{2} = f(2) = O. \times_{21} \times_{22} \times_{23} \times_{24} \times_{25} \cdots$$

$$C_{3} = f(3) = O. \times_{31} \times_{32} \times_{33} \times_{34} \times_{35} \cdots$$

$$C_{4} = f(4) = O. \times_{41} \times_{42} \times_{43} \times_{44} \times_{45} \cdots$$

Define a number
$$C_0$$
 by
 $C_0 = O. X_{01} X_{02} X_{03} X_{04} X_{05} \cdots$

where

$$X_{om} = \begin{cases} 1 & \text{if } X_{mm} \neq 1 \\ 2 & \text{if } X_{mm} = 1 \end{cases}$$

Then $C_{6} \in (0,1)$, but $C_{0} \neq C_{1}$ because $X_{01} \neq X_{11}$ $C_{0} \neq C_{2}$ " $X_{02} \neq X_{22}$ $C_{0} \neq C_{3}$ " $X_{03} \neq X_{33}$ \vdots

 E_{X} : |N| < |R|.

Then (Contor): Let A be any set. Then

$$|A| < |P(A)|$$
Note: We've seen that if A is finite,
then $|P(A)| = 2^{|A|} > |A|$.
So the interesting (hard) part of
this theorem is the case where
A is infinite.
Proof: First, consider g: $A \rightarrow P(A)$
 $x \longmapsto \xi x_{3}^{2}$
This is a bijection, since $\{x_{i}\} = \{x_{2}\}$
if and only if $x_{1} = x_{2}$.
Thus $|A| \leq |P(A)|$.
Next, we must show $|A| \neq |P(A)|$.
Consider any function $f: A \rightarrow P(A)$.
So for any $x \in A$, we get a subset
 $f(x) \leq A$.

Claim: f is not surjective
(Thus, f cannot be a bijection.)
Consider

$$S = \{x \in A \mid x \notin f(x)\} \in A.$$

Suppose that $S \in Rng(f)$. Then
 $S = f(x_0)$ for some $x_0 \in A.$
Is $x_0 \in S$ or $x_0 \notin S$?
If $x_0 \in S$, then by definition
 $x_0 \notin f(x_0) = S$, a contradiction.
If $x_0 \notin S = f(x_0)$, then by
definition of S, $x_0 \in S$, a contradiction.
Since both possibilities lead to a
contradiction, it must be that
 $S \notin Rng(f)$. Thus, f is not surjective.