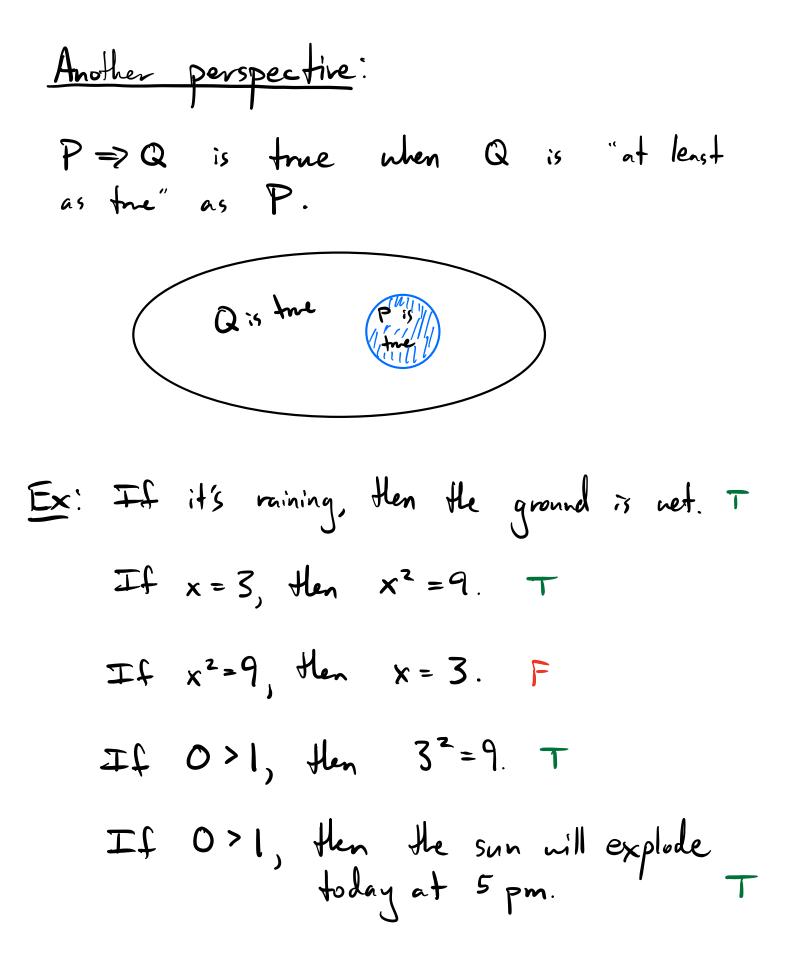
$$Warm - Up$$
: Let P, Q be sentences.
Find a sentence using only the logical
connectives \neg and \land which is
logically equivalent to PVQ.



In fact, Prop: Let P and Q be sentences. Then $P \Rightarrow Q = -P \vee Q$

Proof: The only situation in which P=>Q is filse is if P is true and Q is filse. This is precisely when ¬PVQ is filse. In all other cases, both P=>Q and ¬PVQ are true.

$$Cor: \neg (P \Rightarrow Q) = P \land \neg Q.$$

$$Proof: \neg (P \Rightarrow Q) = \neg (\neg P \lor Q) = \neg (\neg P) \land \neg Q$$

$$= P \land \neg Q$$

Ex: The negation of "If it is Monday, then I will attend class" is logically equivalent to "It is Monday and I will not attend class."

A sentence of the form $P \Rightarrow Q$ is called a <u>conditional sentence</u>.

Ways to say P=>Q: "P implies Q" "If P, then Q" "P is sufficient for Q" "Q is necessary for P"

Ex: I nent
"If
$$x \ge 4$$
, then $x \ge 0$ "
to be a true sentence. Is it?
Let's look at all possible x values.

$$\frac{x \ge 4}{x \ge 4} \xrightarrow{x \ge 0} (x \ge 4) \Longrightarrow (x \ge 0)$$

$$\frac{x \ge 4}{x \ge 4} \xrightarrow{T} \xrightarrow{T} \xrightarrow{T}$$

$$x \ge 4 \xrightarrow{T} \xrightarrow{T} \xrightarrow{T} \xrightarrow{T}$$

$$x \ge 0 \xrightarrow{F} \xrightarrow{F} \xrightarrow{F} \xrightarrow{T} \xrightarrow{T}$$

Converse and Contrapositive Let P and Q be sentences. The <u>contrapositive</u> of $P \Rightarrow Q$ is the sentence $\neg Q \Rightarrow \neg P$. This is logically equivalent to $P \Rightarrow Q$. The converse of $P \Rightarrow Q$ is the sentence Sentence $Q \implies P$ This is <u>NOT</u> logically equivalent to $P \Longrightarrow Q$. Ex: "If it is raining, then the ground is net." Contrapositive: "If the ground is dry, then it is not raining." <u>Converse</u>: "If the ground is net, then it is raining."

Prop: $P \Rightarrow Q$ is logically equivalent to the contrapositive $\neg Q \Rightarrow \neg P$.

Proof:					
Ρ	Q	P⇒Q	٦P	-Q	$\neg Q \Rightarrow \neg P$
Т	Т	Т	F	F	au
Т	٦	F	F	Т	F
F	Т	Т	Т	F	Т
F	F	Т	Т	\top	T

We can see $P \Rightarrow Q$ is <u>NOT</u> by: equivalent to the converse $Q \Rightarrow P$ in the following truth table: $\frac{P | Q | P \Rightarrow Q | Q \Rightarrow P}{T | T | T | T | T}$ T | F | F | T | TF | F | T | FF | T | F | FF | T | F | F