$$\frac{Warm - Up}{P}: Use a truth tuble to show P \Rightarrow Q is not logically equivalent to Q \Rightarrow P.$$

Recall:
$$Q \Rightarrow P$$
 is the converse of $P \Rightarrow Q$.
 $\neg Q \Rightarrow \neg P$ is the contrupositive
of $P \Rightarrow Q$, and
 $\neg Q \Rightarrow \neg P = P \Rightarrow Q$.

A final logical connective:
(5) Biconditional:
$$\iff$$
 means "if and only if"
 $P \iff Q$ is true exactly when P and Q have
the same truth value.
 $\frac{P}{T} = \frac{Q}{T} = \frac{P \iff Q}{T}$
 $T = T$
 $T = F$
 $F = T$
 $F = F$
 $F = T$
 $F = T$
 $F = T$
 $F = T$

Thm: $P \Leftrightarrow Q$ is logically equivalent to $(P \Rightarrow Q) \land (Q \Rightarrow P)$

Proof:

P	Q	P ⇔ Q	P ⇒Q	Q⇒P	$(P \Rightarrow Q) \land (Q \Rightarrow P)$
L	Τ	Г	Ŧ	T	T
Т	F	F	F	Т	F
F	T	F	Т	F	F
귀	F	Т	Т	Т	Т
	•	•			·

A sentence of the form $P \Leftrightarrow Q$ is called a <u>biconditional</u> sentence.

Ways to say
$$P \rightleftharpoons Q$$
:
"P if and only if Q"
"P is necessary and sufficient for Q"
"Q is necessary and sufficient for P"
"P is necessary for Q" is $Q \Rightarrow P$
"P is sufficient for Q" is $P \Rightarrow Q$

$\underline{E_{x}}: x^{2} = 9 \iff x = 3 \text{ or } x = -3$
How do ne know this is a true sentence? Let $P = "x^2 = 9"$
Q = "x = 3 or x = -3"
Show $P \Rightarrow Q$ is true T = T T = T T = T
<u>Case 1</u> : P is the Then $x^2=9$, $F = T$ So
$x^2 - 9 = 0.$
Factoring, re get
(x-3)(x+3) = 0.
Hence, x-3=0 or x+3=0.
Thus, $x = 3$ or $x = -3$.
Case 2: P is fulse. Then P => Q is vacuously the.

Show Q=>Pis true Case 1: Q is fine. Then x = 3 or x = -3, so $x^{2} = (3)^{2} = 9$ or $x^{2} = (-3)^{2} = 9$. <u>Case</u> 2: Q is false. Then Q => P is vacaonsly true. Conditional Proof In general, to show $P \Rightarrow Q$ is true, we must Assume P is true.
 Under this assumption, show that Q must be true also. Why is this valid? When P is false, P=>Q is antomatically true.

