Homework 14 Math 3345 – Spring 2023 – Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

- 1. Let $a, b \in \mathbb{N}$. We say that a positive integer $m \in \mathbb{N}$ is a **common multiple** of a and b if a|m and b|m.
 - (a) Show that for any $a, b \in \mathbb{N}$, ab is a common multiple of a and b.
 - (b) Prove that for any $a, b \in \mathbb{N}$, there exists a common multiple ℓ of a and b such that $\ell \leq m$ if m is any common multiple of a and b. This number ℓ is called the **least** common multiple of a and b. We write $\ell = \text{lcm}(a, b)$.
 - (c) Give an example of positive integers $a, b \in \mathbb{N}$ such that lcm(a, b) = ab.
 - (d) Give an example of positive integers $a, b \in \mathbb{N}$ such that lcm(a, b) < ab.
 - (e) Explain why there do not exist positive integers a and b such that lcm(a, b) > ab.
- 2. [Falkner Section 4 Exercise 25] Let $m \in \mathbb{N}$. Show that
 - (a) For all $a \in \mathbb{Z}$, we have $a \equiv a \mod m$. [Reflexivity]
 - (b) For all $a, b \in \mathbb{Z}$, if $a \equiv b \mod m$, then $b \equiv a \mod m$. [Symmetry]
 - (c) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$. [Transitivity]
- 3. [Falkner Section 4 Exercise 26 modified] Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$. Suppose that $a \equiv b \mod m$ and $c \equiv d \mod m$.
 - (a) Prove that $a + c \equiv b + d \mod m$.
 - (b) Prove that $a c \equiv b d \mod m$.
 - (c) Prove that $ac \equiv bd \mod m$. [HINT: Since $a \equiv b \mod m$, m divides b a, so b a = mk for some integer k. Rewrite this as b = a + mk. Similarly, $d = c + m\ell$ for some integer ℓ .]

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

- 1. Let $a, b \in \mathbb{N}$. Prove that $gcd(a, b) \cdot lcm(a, b) = ab$.
- 2. [Falkner Section 4 Exercise 16] Let $n \in \mathbb{N}$. Prove that there exists a prime number q such that $n < q \le 1 + n!$. [HINT: Take q to be any prime which divides 1 + n!. (How do we know such a prime exists?) Now explain why $q \le 1 + n!$ and q > n must both be true.]