Homework 14
Math 3345 - Spring 2023 - Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. Let $a, b \in \mathbb{N}$. We say that a positive integer $m \in \mathbb{N}$ is a common multiple of a and b if $a \mid m$ and $b \mid m$.
(a) Show that for any $a, b \in \mathbb{N}, a b$ is a common multiple of a and b.
(b) Prove that for any $a, b \in \mathbb{N}$, there exists a common multiple ℓ of a and b such that $\ell \leq m$ if m is any common multiple of a and b. This number ℓ is called the least common multiple of a and b. We write $\ell=\operatorname{lcm}(a, b)$.
(c) Give an example of positive integers $a, b \in \mathbb{N}$ such that $\operatorname{lcm}(a, b)=a b$.
(d) Give an example of positive integers $a, b \in \mathbb{N}$ such that $\operatorname{lcm}(a, b)<a b$.
(e) Explain why there do not exist positive integers a and b such that $\operatorname{lcm}(a, b)>a b$.
2. [Falkner Section 4 Exercise 25] Let $m \in \mathbb{N}$. Show that
(a) For all $a \in \mathbb{Z}$, we have $a \equiv a \bmod m$. [Reflexivity]
(b) For all $a, b \in \mathbb{Z}$, if $a \equiv b \bmod m$, then $b \equiv a \bmod m$. [Symmetry]
(c) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \bmod m$ and $b \equiv c \bmod m$, then $a \equiv c \bmod m$. [Transitivity]
3. [Falkner Section 4 Exercise 26 - modified] Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$. Suppose that $a \equiv b \bmod m$ and $c \equiv d \bmod m$.
(a) Prove that $a+c \equiv b+d \bmod m$.
(b) Prove that $a-c \equiv b-d \bmod m$.
(c) Prove that $a c \equiv b d \bmod m$. [Hint: Since $a \equiv b \bmod m, m$ divides $b-a$, so $b-a=m k$ for some integer k. Rewrite this as $b=a+m k$. Similarly, $d=c+m \ell$ for some integer ℓ.]

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. Let $a, b \in \mathbb{N}$. Prove that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.
2. [Falkner Section 4 Exercise 16] Let $n \in \mathbb{N}$. Prove that there exists a prime number q such that $n<q \leq 1+n$!. [Hint: Take q to be any prime which divides $1+n$!. (How do we know such a prime exists?) Now explain why $q \leq 1+n$! and $q>n$ must both be true.]
