Homework 15

Math 3345 - Spring 2023 - Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. Without using a calculator, find the natural number k such that $0 \leq k \leq 14$ and k satisfies the given congruence.
(a) $2^{75} \equiv k \bmod 15$
(b) $6^{41} \equiv k \bmod 15$
(c) $140^{874} \equiv k \bmod 15$
2. Let $a, b, c \in \mathbb{N}$. Prove that if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
[HinT: First check that the statement is true if any of a, b, or c is equal to 1. Then, for the case where $a>1, b>1$, and $c>1$, consider unique prime factorizations.]

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. Recall that any positive integer $n \in \mathbb{N}$ has a unique base-10 expression:

$$
n=\sum_{i=0}^{k} a_{i} 10^{i}
$$

where $k \geq 0$ and $0 \leq a_{i} \leq 9$ for all i. The integers a_{i} are the digits of n. For example,

$$
4592=2 \cdot 10^{0}+9 \cdot 10^{1}+5 \cdot 10^{2}+4 \cdot 10^{3}
$$

Prove the following:
(a) $2 \mid n$ if and only if 2 divides the "ones digit" a_{0}.
(b) $3 \mid n$ if and only if 3 divides the sum of the digits $\sum_{i=0}^{k} a_{i}$.
(c) $5 \mid n$ if and only if the ones digit a_{0} is equal to 0 or 5 .
2. Formulate and prove divisibility criteria similar to those in the previous problem for the following conditions:
(a) $4 \mid n$.
(b) $9 \mid n$.
(c) $11 \mid n$.

