Homework 21

Math 3345 - Spring 2023 - Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 11 Exercise 6] Let $f(x)=x^{2}+1$ for all $x \in \mathbb{R}$, let $g(y)=\sqrt{y-1}$ for all $y \in[1, \infty)$, and let $h(u)=1-u$ for all $u \in[2,3)$. Find the range of f, the range of g, and the range of h.
2. [Falkner Section 11 Exercise 15(a) - modified] Recall that for a set X, the power set $\mathscr{P}(X)$ is the set of all subsets of X.
Let S and T be sets.
(a) Prove that if $A \subseteq S$ and $B \subseteq T$, then $A \cup B \subseteq S \cup T$.
(b) Prove that every subset of $S \cup T$ is of the form $A \cup B$, where $A \subseteq S$ and $B \subseteq T$. That is, if $Y \subseteq S \cup T$, then there exist subsets $A \subseteq S$ and $B \subseteq T$ such that $Y=A \cup B$.

We may understand the result of part (a) as saying that the function

$$
\begin{aligned}
f: \mathscr{P}(S) \times \mathscr{P}(T) & \rightarrow \mathscr{P}(S \cup T) \\
(A, B) & \mapsto A \cup B
\end{aligned}
$$

is well-defined. That is, if $A \subseteq S$ and $B \subseteq T$, then $f(A, B)=A \cup B$ is a well-defined subset of $S \cup T$.
The result of part (b) then shows that the range of f is all of $\mathscr{P}(S \cup T)$, i.e., f is surjective. That is, if $Y \in \mathscr{P}(S \cup T)$, then there exist $A \in \mathscr{P}(S)$ and $B \in \mathscr{P}(T)$ such that $f(A, B)=Y$.
(c) Illustrate this line of thinking in the case where $S=\{1,2\}$ and $T=\{2,3\}$. The eight subsets of $S \cup T=\{1,2,3\}$ are

$$
\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\} .
$$

For each set Y in this list, find $A \subseteq\{1,2\}$ and $B \subseteq\{2,3\}$ such that $A \cup B=Y$.
(d) Continuing with the example from part (c), for which of the sets Y is there a unique choice of $A \subseteq\{1,2\}$ and $B \subseteq\{2,3\}$ such that $A \cup B=Y$?

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 10 Exercise 34 - modified]

(a) Let A be a set. Prove that $A \times \varnothing=\varnothing$.
(b) Let A and B be sets. Deduce that $A \times \varnothing=B \times \varnothing$.
(c) Let A, B, and C be sets, and suppose that $C \neq \varnothing$. Prove that if $A \times C=B \times C$, then $A=B$.
2. [Falkner Section 10 Exercise 26] Prove Theorem 10.36(b): Let S be a set and let \mathscr{A} be a nonempty set of sets. Then

$$
S \cup\left(\bigcap_{A \in \mathscr{A}} A\right)=\bigcap_{A \in \mathscr{A}}(S \cup A) .
$$

3. [Falkner Section 10 Exercise 27] Let A be a set and let \mathscr{B} be a nonempty set of sets. Show that:
(a) $A \cup\left(\bigcup_{B \in \mathscr{B}} B\right)=\bigcup_{B \in \mathscr{A}}(A \cup B)$
(b) $A \cap\left(\bigcap_{B \in \mathscr{B}} B\right)=\bigcap_{B \in \mathscr{A}}(A \cap B)$
